Electrochemical kinetics (heterogeneous dynamic electrochemistry)

- P79. A typical exchange current density, that for H⁺ discharge at platinum, is 0.79 mA cm⁻² at 25.0 °C. Calculate the current density at an electrode when its overpotential is 10 mV (a), 100 mV (b), and -0.5 V (c). Take $\alpha = 0.50$. ((a) 0.309 mA cm⁻², (b) 5.42 mA cm⁻², (c) -13.3 A cm⁻²)
- P80. The exchange current density for H⁺ discharge at zinc is about $5 \cdot 10^{-11}$ A cm⁻². Can zinc be deposited from a unit activity aqueous solution of a zinc salt? Take $\alpha = 0.50$ and T = 25 °C. The minimal exchange current density for hydrogen evolution is j(min) = 1 mA cm⁻². ($j(H^+) = 1.33 \cdot 10^{-4}$ A cm⁻². Since this value is lower than 1 mA cm⁻², H₂ cannot be formed, so, Zn is deposited on the electrode instead.)
- P81. Estimate the limiting current density at an electrode in which the concentration of Ag⁺ is 2.5 mmol dm⁻³ at 25.0 °C. The thickness of the Nernst diffusion layer is 0.40 mm. The ionic conductivity of Ag⁺ ion at infinite dilution and 25.0 °C is 61.9 S cm² mol⁻¹. (0.994 A/m²)
- P82. Calculate the minimum (zero-current) potential difference of a Ni-Cd cell, and the maximum possible power output when 100 mA is drawn at 25.0 °C. Standard redox potential values are listed below. (E = 1.30 V and P = 0.130 W)
- P83. The corrosion current density j_{corr} at an iron anode is 1.0 A m⁻². What is the corrosion rate in mm/year? Assume uniform corrosion. Iron has a density of 7.874 g cm⁻³ and a molar mass of 55.845 g/mol. (0.773 mm/year)
- P84. Which of the following metals has a thermodynamic tendency to corrode in moist air at pH = 7.0: Fe, Cu, Pb, Al, Ag, Cr, Co? Take as a criterion of corrosion a metal ion concentration of at least 10⁻⁶ mol dm⁻³. Use the standard redox potential values from the list below. (In the absence of O₂: Fe, Al, Co, Cr; in the presence of O₂: all.)

Standard redox potential values:

Half-reaction	$E^{\bullet}(V)$
$Al^{3+} + 3e^{-} \rightarrow Al$	-1.66
$Cd(OH)_2 + 2e^- \rightarrow Cd + 2OH^-$	-0.81
$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$Cr^{3+} + 3e^- \rightarrow Cr$	-0.74
$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44
$\text{Co}^{2+} + 2\text{e}^- \rightarrow \text{Co}$	-0.28
$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13
$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.04
$2H^+ + 2e^- \rightarrow H_2$	0.00
$Cu^{2+} + 2e^{-} \rightarrow Cu$	0.40
$NiO(OH) + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$	0.49
$Cu^+ + e^- \rightarrow Cu$	0.52
$Ag^{+} + e^{-} \rightarrow Ag$	0.80
$O_2 + 4H^+ + 4e^- \rightarrow 4 H_2O$	1.23