Thermodynamics of electrodes and Galvanic cells

P57. Calculate the mean activity coefficient of a $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous lead(II) nitrate solution from the fact that the electrode potential of a lead electrode immersed into this solution is $-0,158 \mathrm{~V}$ at $25.0^{\circ} \mathrm{C}$ and $E^{\theta}\left(\mathrm{Pb}^{2+} / \mathrm{Pb}\right)=-0.130 \mathrm{~V} .\left[\gamma_{ \pm}=0.226\right]$

P58. The cell potential of the following galvanic cell is 0.2848 V at $20.0^{\circ} \mathrm{C}$:

$$
\mathrm{Ag}(s)\left|0.010 \mathrm{M} \mathrm{AgNO}_{3}(a q)+0.10 \mathrm{M} \mathrm{NH}_{3}(a q) \| 0.010 \mathrm{M} \mathrm{AgNO}_{3}(a q)\right| \mathrm{Ag}(s)
$$

The mean activity coefficient in the right-hand side solution is $\gamma_{ \pm}=0.896$. Calculate the net stability constant of the following reaction: $\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} .\left[\mathrm{K}=1.37 \times 10^{7}\right]$

P59. The cell potential of the following galvanic cell is 0.8356 V at $25.0^{\circ} \mathrm{C}$:
$\mathrm{Pt}\left(\mathrm{H}_{2}(g, 1\right.$ bar $\left.)\right)\left|\mathrm{HClO}_{4}(a q, a=1) \| \mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}\left(a q, a=6,0 \cdot 10^{-3}\right)\right| \mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(a q, a=6,0 \cdot 10^{-3}\right) \mid \mathrm{Pt}(s)$
Calculate the standard electrode potential of the $\mathrm{Hg}^{2+} / \mathrm{Hg}_{2}^{2+}$ half reaction. [$\left.E^{\theta}=0.901 \mathrm{~V}\right]$
P60. The cell potential of the following galvanic cell is 0.9647 V at $25.0^{\circ} \mathrm{C}$:

$$
\mathrm{Pb}(s)\left|\mathrm{PbSO}_{4}(a q)\right| \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)\left|\mathrm{Hg}_{2} \mathrm{SO}_{4}(a q)\right| \mathrm{Hg}(s)
$$

The temperature coefficient of the cell potential is $1.74 \cdot 10^{-4} \mathrm{~V} \mathrm{~K}^{-1}$. Give the chemical reaction responsible for the production of electricity, and calculate its reaction heat and reaction Gibbs free energy. $\left[\mathrm{Pb}(s)+\mathrm{Hg}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{PbSO}_{4}(a q)+2 \mathrm{Hg}(s)\right.$; $\left.\Delta_{\mathrm{r}} G=-186.2 \mathrm{~kJ} / \mathrm{mol} ; \Delta_{\mathrm{r}} \mathrm{H}=-176.1 \mathrm{~kJ} / \mathrm{mol}\right]$

P61. Calculate the equilibrium constant of the following reaction at $25.0^{\circ} \mathrm{C}$:

$$
\mathrm{Fe}^{3+}+\mathrm{Cu}^{+} \rightleftharpoons \mathrm{Fe}^{2+}+\mathrm{Cu}^{2+}
$$

$E^{\ominus}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)=0.77 \mathrm{~V}$ and $E^{\ominus}\left(\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}\right)=0.17 \mathrm{~V} .\left[K=1.39 \times 10^{10}\right]$
P62. Calculate the equilibrium constant of the following reaction at $20.0^{\circ} \mathrm{C}$:

$$
2 \mathrm{FeCl}_{2}+\mathrm{H}_{3} \mathrm{AsO}_{4}+2 \mathrm{HCl} \rightleftharpoons 2 \mathrm{FeCl}_{3}+\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

$E^{\theta}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)=0.772 \mathrm{~V}$ and $E^{\ominus}\left(\mathrm{AsO}_{4}^{3-} / \mathrm{AsO}_{3}^{3-}\right)=0.630 \mathrm{~V}$ (the electrode half-reaction in the second case is as follows: $\mathrm{AsO}_{4}^{3-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{AsO}_{3}^{3-}+\mathrm{H}_{2} \mathrm{O} .\left[\mathrm{K}=1.31 \times 10^{-5}\right]$

P63. Using the fact that the Gibbs free energy is a state function, calculate $E^{\theta}\left(\mathrm{Cu}^{+} / \mathrm{Cu}\right)$ from the following standard electrode potential values: $E^{\theta}\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)=0.34 \mathrm{~V}$ and $E^{\ominus}\left(\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}\right)=0.16 \mathrm{~V} \cdot\left[E^{\ominus}\left(\mathrm{Cu}^{+} / \mathrm{Cu}\right)=0.52 \mathrm{~V}\right]$

