
PhysChem26

1

Experimental photochemistry 
and its practical problems
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Light sources
2

 The energy of the photons emitted by the light source 
should be suitable for exciting the studies molecules.

 Photolysis from the view of the light source:
 The sample is illuminated continuously with an intense light 

source, the photon flux is constant. The photoreaction is 
monitored through the offline or online determination of 
reactant and/or product concentrations. The concentration of 
the reactive excited states is very low and constant.

 Excitation with short, high energy pulses (flash photolysis). It is 
used if very reactive excited molecules or radicals formed from 
the need to be prepared in high initial concentration.

 Light sources from the point of view of photolysis:
 Continuously emitting (laser, diode array spectrophotometer),

 Pulsed (flash photolysis, laser, diode array spectrophotometer).
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Time between registering 
two spectra (cycle time)

: integration time (illumination)

: dark period

Light sources
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 Based on the energy distribution of emitted photons:
 Monochromatic,

 Lasers: typical light sources of very narrow band width,

 Fluorescent light sources „filled” with low pressure metals: 
radiation containing a few lines, mostly emitting at the resonance 
line of the filling metal. E.g. low pressure mercury vapor lamps emit 
at 253.7 nm

 Polychromatic – monochromator or filter might be needed.
 Light sources filled with high pressure mercury vapor, halogens, 

noble gases (Xe) or their mixtures.

 Solar simulator: the spectral distribution resembles that of the 
sunlight reaching the surface of Earth. Suitable for studying 
processes induced by natural sunlight. Extremely large power is 
common (up to 1000 W).

 Diode array spectrophotometer: close to a solar simulator.

Light sources
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Actinometers
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 The quantitative description of a photoreactions 
assumes exact knowledge of the number of photons 
entering the reactor in unit time.

 Physical or chemical actinometers are needed:
 Chemical actinometer: A photoreactant with known , the 

extent of reaction is measurable easily and rapidly.

 Physical actinometer: light energy measuring devices.
 Michelson-Martin actinometer: the sensor is  black bimetal, whose 

distortion moves a quartz filament.

 Linke-Feussner actinometer
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Chemical actinometers
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 For continuous lamps:
 Tris-oxalato-ferrate(III), [Fe(C2O4)3]3-

 Uranyl oxalate, [UO2(C2O4)]

 Reinecke salt, [Cr(NH3)2(SCN)4]-

 A lot of organic molecules (butirophenon, piperylene).

 Pulsed lasers:
 Hexacyano-ferrate(II), [Fe(CN)6]4-

 Organic molecules (e.g.. aberchrome 540)
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 Tris-oxalato-ferrate(III), [Fe(C2O4)3]3-; 254-500 nm

 [Fe(C2O4)3]3- + h  *[Fe(C2O4)3]3-

 *[Fe(C2O4)3]3-  [Fe(C2O4)2]2- + C2O4
-.

 [Fe(C2O4)3]3- + C2O4
-.  [Fe(C2O4)3]2- + C2O4

2-

 [Fe(C2O4)3]2-  [Fe(C2O4)2]2- + 2 CO2

 The absorption of the Fe(II) complex is negligible compared to the  
Fe(III) complex.

 The concentration of Fe(II) is measured through complexation by 
1,10-phenanthroline by spectrophotometry.

 The quantum yield of Fe(II) formation is known at several different 
wavelengths,  ≈ 1.

Chemical actinometers
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 Tris-oxalato-ferrate(III), [Fe(C2O4)3]3-; 254-500 nm
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Chemical actinometers
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 Tris-oxalato-ferrate(III), [Fe(C2O4)3]3-; 254-500 nm
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Chemical actinometers
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 Uranyl oxalate, [UO2(C2O4)]; 200-450 nm

 Products of the photodecomposition of the oxalate ion: 
CO2, CO and HCOOH.

 U(VI) is reduced to U(IV).

 For the oxalate decomposition:  = 0.48-0.61.

 Toxic and radioactive.

Chemical actinometers
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 Reinecke salt, [Cr(NH3)2(SCN)4]-; 310-750 nm

 [Cr(NH3)2(SCN)4]- + H2O + h  [Cr(NH3)2(SCN)3(H2O)] + SCN-

 [Cr(NH3)2(SCN)3(H2O)] + H2O ⇌ [Cr(NH3)2(SCN)2(H2O)2] + SCN-

 For the formation of SCN-  = 0.27-0.31

Chemical actinometers
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Spectrophotometers
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 Starting point of photochemical investigations: 
registration of the absorption spectrum.

 Absorption spectra are often used in monitoring 
processes (spectrophotometric detection).

 Classification of spectrophotometers:
 Singe beam – typically diode array

 Double beam – Scanning
 Photocell, photoelectron-multiplier tube (PMT) or photodiode.

Cell

Spectrophotometer 
lamps

Scanning spectrophotometer

Dispersion unit

Dispersion unit

Cell

Diode array spectrophotometer

Spectrophotometer 
lamps

Photochemical measurements in              
diode array spectrophotometers

 Polychromatic light is the driving force

 Relatively low light intensity

 Excited states cannot be detected

 The stoichiometric photoreaction is readily 
monitored

 Solution homogeneity must be maintained

 Light: a „reactant” whose amount can be changed 
with limitations
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… … 
… … 
… … 
… …

Spectrofluorimeters
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 Excitation with light of selected wavelength.

 The light emitted by the sample is measured in a 
wavelength range that is selected independently of 
the excitation.

 Excitation and detection are perpendicular.

 Usually two monochromators:
 Excitation

 Detection

 If the excitation wavelength is varied, luminescence 
surfaces can be obtained.
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Spectrofluorimeters Lasers
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 Fundamental role in photochemical investigations.

 Solid lasers:
 Ruby laser

 Nd-YAG (yttrium aluminum- garnet): the most common today

 Ti-sapphire laser

 Liquid lasers:
 Dye lasers: solution of compound with intense luminescence

 Gas lasers:
 CO2, He, Ne

 Excimer lasers: XeCl, KrF, ArF

Flash photolysis
21

 Two light sources:
 Exciting: only in pulsed operation.

 Detecting: both pulsed and continuous operations possible.

 Originally a flash lamp was used, the introduction of 
lasers was a major development.

 Laser pulses are typically a few ns long and provide 
about 100 mJ of energy (power: about 100 MW).
 Development: shorter path length, larger energy.

 The pulse length is of fundamental importance, as it set the 
limit for the fastest reaction that can be studied reliably.

22

 Detector: typically PMT, best time resolution is 20-
30 ps. Both emission and absorbance measurements 
possible.

 Man applications:
 Photophysical measurements (fluorescence or 

phosphorescence life time).

 Photochemistry: generally, monitoring of reactive 
intermediates with absorbance measurements.

Flash photolysis

23

Flash photolysis

2ω : 532 nm
3ω : 355 nm
4ω : 266 nm
5ω : 213 nm

Applied Photophysics LKS.60 laser flash photolysis instrument

24

Flash photolysis
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Flash photolysis
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Flash photolysis
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Flash photolysis Quantitative description of photochemical reactions
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 The rate of the primary photochemical process is 
directly proportional to the number of absorbed 
photons in unit time

 This can be calculated from the molar absorbances 
and the intensity of the incident light beam

 Any other (non-photochemical) reaction in the 
networks is described by normal thermal kinetics

 Number of adsorbed photon in unit time for mono-
chromatic light (N):

 Polychromatic light:

 Polychromatic light + inert absorbing species (inner 
filter effect):
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Quantitative description of photochemical reactions

Abs1 = 1
Passes: 10%
Absorbed: 90%

Abs2 = 1
Passes: 10%
Absorbed: 90%

Abs1&2 = 2
Passes: 1%
Absorbed: 99%
= 49.5% + 49.5%

30

Quantitative description of photochemical reactions

Sample 1 Sample 2 Sample 1 & 2

 Inner filter effect:
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Sample 1 Sample 2

Abs1 = 0.01
Passes: 97.7%
Absorbed: 2.8%

Abs2 = 0.01
Passes: 97.7%
Absorbed: 2.8%

Abs1&2 = 0.02
Passes: 95.5%
Absorbed: 4.5%
= 2.25% + 2.25%

Sample 1 & 2

 Inner filter effect:

31

Quantitative description of photochemical reactions

 The sample volume outside the illuminated space 
significantly influences the number of absorbed 
photons in unit volume.

 Volume dependence of photoreactions:
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Quantitative description of photochemical reactions
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253 nm: Ce(III)

290 nm: Ce(IV)

Ce(IV)  + H2O → Ce(III) + O2
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Quantitative description of photochemical reactions
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 Photochemical decay of Ce(IV):

   




  d101 Ce(IV),Ce(IV)

A

A

Vdt

dc A,P

Ce(IV)  + H2O → Ce(III) + O2

Initial conditions: t = 0 s
cCe(IV) = 0.2738 mM
cCe,total = 0.300 mM
V = 3.00 cm3
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Quantitative description of photochemical reactions


