

Hydrogen-like particles				
Radial wave function of hydrogen-like particles:				
$R_{n,l}(r) = -N_{n,l}r^{l} \exp\left(-\frac{Zr}{na_{0}}\right)L_{n+l}^{2l+1}\left(\frac{2Zr}{na_{0}}\right)$				
orbital	radial wave function			
1 <i>s</i>	$R_{1,0} = 2(Z / a_0)^{\frac{1}{2}} \exp(-Zr / a_0)$			
2 <i>s</i>	$R_{2,0} = \left[(Z/a_0)^{\frac{1}{2}} (2 - Zr/a_0) \exp(-Zr/2a_0) \right] / 2^{\frac{1}{2}}$			
2 <i>p</i>	$R_{2,1} = \left[(Z/a_0)^{\frac{1}{2}} (Zr/a_0) \exp(-Zr/2a_0) \right] / (2 \cdot 6^{\frac{1}{2}})$			
3 <i>s</i>	$R_{3,0} = \left[2(Z/a_0)^{\frac{1}{2}} (27 - 18Zr/a_0 + 2(Zr/a_0)^2) \exp(-Zr/3a_0) \right] / (81 \cdot 3^{\frac{1}{2}})$			
3 <i>p</i>	$R_{3,1} = \left[4(Z/a_0)^{\frac{1}{2}} (6Zr/a_0 - (Zr/a_0)^2) \exp(-Zr/3a_0) \right] / (81 \cdot 6^{\frac{1}{2}})$			
3 <i>d</i>	$R_{3,2} = \left[4(Z / a_0)^{\frac{1}{2}} (Zr / a_0)^2 \exp(-Zr / 3a_0) \right] / (81 \cdot 3^{\frac{1}{2}})$			

Hydrogen-like particles				
orbital	angular wave function			
s n	$Y_{0,0} = (1/4\pi)^{\frac{1}{2}}$	To obtain real atomic orbitals the real		
p_z p_x	$Y_{1,0} = (6/8\pi)^{1/2} \sin \Theta \cos \Phi$ $Y_{1,\cos\Phi} = (6/8\pi)^{1/2} \sin \Theta \cos \Phi$	combinations of complex $Y_{l,m}$ functions, (<i>i.e.</i>		
p_y	$Y_{\rm l,sin\Phi} = (6/8\pi)^{\frac{1}{2}}\sin\Theta\sin\Phi$	$Y_{l,\cos m\Phi}$ and $Y_{l,\sin m\Phi}$) are used:		
d_{z^2}	$Y_{2,0} = (5/16\pi)^{\frac{1}{2}} (3\cos^2 \Theta - 1)$			
d_{xz}	$Y_{2,\cos\Phi} = (30/8\pi)^{1/2} \cos\Theta \sin\Theta \cos\Phi$			
d_{yz}	$Y_{2,\sin\Phi} = (30/8\pi)^{1/2} \cos\Theta\sin\Theta\sin\Phi$			
$d_{x^2 - y^2}$	$Y_{2,\cos 2\Phi} = (30/32\pi)^{1/2} \sin^2 \Theta \cos 2\Phi$			
d_{rv}	$Y_{2 \sin 2\Phi} = (30/32\pi)^{\frac{1}{2}} \sin^2 \Theta \sin 2\Phi$			

Hydrogen-like particles				
orbital	angular wave function			
S	$Y_{0,0} = (1/4\pi)^{\frac{1}{2}}$	For a single energy value,		
p_z	$Y_{1,0} = (3/4\pi)^{\frac{1}{2}} \cos \Theta$	there are $\sum_{n=1}^{n-1}$		
p_x	$Y_{1,\cos\Phi} = (6/8\pi)^{\frac{1}{2}}\sin\Theta\cos\Phi$	$\sum_{l=0}^{\infty} (2l+1) = n^2$		
p_y	$Y_{1,\sin\Phi} = (6/8\pi)^{\frac{1}{2}}\sin\Theta\sin\Phi$	wave functions (degree of degeneration)		
d_{z^2}	$Y_{2,0} = (5/16\pi)^{1/2} (3\cos^2 \Theta - 1)$			
d_{xz}	$Y_{2,\cos\Phi} = (30/8\pi)^{\frac{1}{2}} \cos\Theta\sin\Theta\cos\Phi$			
d_{yz}	$Y_{2,\sin\Phi} = (30/8\pi)^{\frac{1}{2}} \cos\Theta\sin\Theta\sin\Phi$			
$d_{x^2 - y^2}$	$Y_{2,\cos 2\Phi} = (30/32\pi)^{1/2} \sin^2 \Theta \cos 2\Phi$			
d_{xy}	$Y_{2,\sin 2\Phi} = (30/32\pi)^{\frac{1}{2}} \sin^2 \Theta \sin 2\Phi$			

