Multiparticle systems

- Previous part: principles of quantum mechanics

applied for systems with a single particle

- Atoms and molceules: simultaneous presence of several particles
- In a system of N particles, these particles do not have individual states, the system can only be characterized with a joint wave function:
$\Psi\left(x_{1}, y_{1}, z_{1}, m_{s 1}, x_{2}, y_{2}, z_{2}, m_{s 2}, \ldots, x_{N}, y_{N}, z_{N}, m_{s N}, t\right)$

or $\Psi(1,2, \ldots, N, t)$

Multiparticle systems

- The probability that the individual particles will be found in the region with volume $\mathrm{d} V=\mathrm{d} V_{1} \cdot \mathrm{~d} V_{2} \cdot \ldots \cdot \mathrm{~d} V_{N}$ around the coordinates:

$$
\Psi^{*}(1,2, \ldots, N, t) \Psi(1,2, \ldots, N, t) \mathrm{d} V
$$

- The state equation (Schrödinger equation):

$$
-\frac{\hbar}{\mathrm{i}} \frac{\partial \Psi}{\partial t}=-\sum_{j=1}^{N} \frac{\hbar^{2}}{2 \mu_{j}} \Delta_{j} \Psi+V \Psi
$$

Laplace operator: derivation with
the total interaction
respect to spatial coordinate j : energy of particles

$$
\overbrace{\Delta_{j}=\frac{\partial^{2}}{\partial x_{j}^{2}}+\frac{\partial^{2}}{\partial y_{j}^{2}}+\frac{\partial^{2}}{\partial z_{j}^{2}}}
$$

The structure of atoms

Elementary particles in atoms:

	proton	neutron	electron
mass (kg)	$1.67262 \cdot 10^{-27}$	$1.67493 \cdot 10^{-27}$	$9.10939 \cdot 10^{-31}$
charge (C)	$1.60218 \cdot 10^{-19}(e)$	0	$-1.60218 \cdot 10^{-19}(-e)$

Size of the nucleus: $10^{-15} \mathrm{~m}$ (nuclear physics, nuclear chemistry) Electron cloud (quantum mechanics:
the nucleus is considered to be a point charge

- the nucleus is practically stationary relative to the center of mass of the atom)

Hydrogen-like particles

$$
\begin{aligned}
& \begin{array}{l}
n=1,2,3, \ldots \\
l=\mathbf{0 , 1 , 2}, \ldots,(n-1) \\
m=-l,-(l-1), \ldots, 0, \ldots,(l-1), l
\end{array} \\
& \text { - The stationary Schrödinger equation } \\
& \quad \text { for the movement of the electron } \\
& -\frac{\hbar^{2}}{2 \mu} \Delta \Psi-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \Psi=E \Psi \\
& \text { - In a spherical coordinate system: }
\end{aligned}
$$

$E_{n}=-\frac{1}{\left(4 \pi \varepsilon_{0}\right)^{2}} \frac{\mu Z^{2} e^{4}}{2 n^{2} \hbar^{2}}$ and $\Psi_{n, l, m}=R_{n, l}(r) Y_{l, m}(\Theta, \Phi)$

Hydrogen-like particles	
$\begin{aligned} & n=1,2,3, \ldots \\ & l=0,1, \ldots, \ldots,(n-1) \\ & m=-l,-(l-1), \ldots, \ldots,(l-1), l \end{aligned}$	
$\begin{gathered} \underbrace{E_{n}=-\frac{1}{\left(4 \pi \varepsilon_{0}\right)^{2}} \frac{\mu Z^{2} e^{4}}{2 n^{2} \hbar^{2}} \text { and } \Psi_{n, l, m}=R_{n, l}(r) Y_{l, m}(\Theta, \Phi)}_{\begin{array}{c} R_{n, l}(r)=-N_{n, r^{\prime}} \text { (radial wave function } \\ N_{n, l}=\left[-\frac{Z r}{n a_{0}}\right) \\ 2 n[(n+l)!]^{3} \\ n a_{n+1} \end{array} L^{L_{n+1}^{2+1}\left(\frac{2 Z r}{n a_{0}}\right)}} \end{gathered}$	

Hydrogen-like particles

$n=1,2,3, \ldots$
$l=0,1,2, \ldots,(n-1)$
$m=-l,-(l-1), \ldots, 0, \ldots,(l-1), l$

$P_{l}^{|m|}(\xi)=\left(2^{l} l!\right)^{-1}\left(1-\xi^{2}\right)^{\mid m / 2} \frac{d^{l|+|n|}}{d \xi^{l+m \mid} \mid}\left(\xi^{2}-1\right)$
$\begin{gathered}\text { same as the wave function of } \\ \text { a particle moving on the }\end{gathered} Y_{l, m}=N_{l, m} P_{l}^{|m|}(\cos \Theta) \mathrm{e}^{\mathrm{i} m \Phi}$ surface of a sphere
angular wave function
$E_{n}=-\frac{1}{\left(4 \pi \varepsilon_{0}\right)^{2}} \frac{\mu Z^{2} e^{4}}{2 n^{2} \hbar^{2}}$ and $\Psi_{n, l, m}=R_{n, l}(r) Y_{l, m}$

Hydrogen-like particles

Hydrogen-like particles

$n=1,2,3, \ldots$
$l=0,1,2, \ldots,(n-1)$
$m=-l,-(l-1), \ldots, 0, \ldots,(l-1), l$

$$
\underset{\text { e polynomial }}{L_{q}^{s}}(\xi)=\frac{\mathrm{d}^{s}}{\mathrm{~d} \xi^{s}}\left[\mathrm{e}^{\xi} \frac{\mathrm{d}^{q}}{\mathrm{~d} \xi^{q}}\left(\xi^{q} \mathrm{e}^{-\xi}\right)\right.
$$

$$
\underset{\substack{n, l \\ \text { radial wave function }}}{ }(r)=-N_{n, l} r^{l} \exp \left(-\frac{Z r}{n a_{0}}\right) L_{n+l}^{2 l+1}\left(\frac{2 Z r}{n a_{0}}\right)
$$

$$
E_{n}=-\frac{1}{\left(4 \pi \varepsilon_{0}\right)^{2}} \frac{\mu Z^{2} e^{4}}{2 n^{2} \hbar^{2}} \text { and } \Psi_{n, l, m}=R_{n, l}(r) Y_{l, m}(\Theta, \Phi)
$$

Hydrogen-like particles

- Conventions for designating $\Psi_{n, l, m}$ wave functions:
$\left.\begin{array}{ll}\begin{array}{l}n=1,2,3,4, \ldots \\ l=0,1,2,3, \ldots\end{array} & \begin{array}{l}\text { the number itself } \\ m=-l,-(l-1), \ldots, 0, \ldots,(l-1), l\end{array} \\ s, p, d, f, \ldots \\ \text { subscript (if needed) }\end{array}\right]$

Hydrogen-like particles

- Radial wave function of hydrogen-like particles:

$$
\left.\underset{\substack{n, l \\ \text { radial wave function }}}{R_{n}\left(-\frac{r^{\prime}}{n a_{0}}\right)}\right) L_{n+1}^{2 l+1}\left(\frac{2 Z r}{n a_{0}}\right)
$$

orbital	radial wave function
$1 S$	$R_{1,0}=2\left(Z / a_{0}\right)^{3 / 2} \exp \left(-Z r / a_{0}\right)$

$2 s \quad R_{2,0}=\left[\left(Z / a_{0}\right)^{3 / 2}\left(2-Z r / a_{0}\right) \exp \left(-Z r / 2 a_{0}\right)\right] / 2^{3 / 2}$
$2 p \quad R_{2,1}=\left[\left(Z / a_{0}\right)^{3 / 2}\left(Z r / a_{0}\right) \exp \left(-Z r / 2 a_{0}\right)\right] /\left(2 \cdot 6^{1 / 2}\right)$
$3 s \quad R_{3,0}=\left[2\left(Z / a_{0}\right)^{\frac{3}{2}}\left(27-18 Z r / a_{0}+2\left(Z r / a_{0}\right)^{2}\right) \exp \left(-Z r / 3 a_{0}\right)\right] /\left(81 \cdot 3^{1 / 2}\right)$
$3 p \quad R_{3,1}=\left[4\left(Z / a_{0}\right)^{3 / 2}\left(6 Z r / a_{0}-\left(Z r / a_{0}\right)^{2}\right) \exp \left(-Z r / 3 a_{0}\right)\right] /\left(81 \cdot 6^{1 / 2}\right)$
$3 d \quad R_{3,2}=\left[4\left(Z / a_{0}\right)^{3 / 2}\left(Z r / a_{0}\right)^{2} \exp \left(-Z r / 3 a_{0}\right)\right] /\left(81 \cdot 3^{1 / 2}\right)$

Hydrogen-like particles		
orbital angular wave function s $Y_{0,0}=(1 / 4 \pi)^{1 / 2}$ For a single energy value, there are p_{z} $Y_{1,0}=(3 / 4 \pi)^{1 / 2} \cos \Theta$ $\sum_{l=1}^{n-1}(2 l+1)=n^{2}$ p_{x} $Y_{1, \cos \Phi}=(6 / 8 \pi)^{1 / 2} \sin \Theta \cos \Phi$ l_{l} p_{y} $Y_{1, \text { sin } \Phi}=(6 / 8 \pi)^{1 / 2} \sin \Theta \sin \Phi$ wave functions (degree of degeneration)		
$d_{z^{2}}$	$Y_{2,0}=(5 / 16 \pi)^{1 / 2}\left(3 \cos ^{2} \Theta-1\right)$	
$d_{x z}$	$Y_{2, \cos \Phi}=(30 / 8 \pi)^{1 / 2} \cos \Theta \sin \Theta \cos \Phi$	
$d_{y z}$	$Y_{2, \text { sin } \Phi}=(30 / 8 \pi)^{1 / 2} \cos \Theta \sin \Theta \sin \Phi$	
$d_{x^{2}-y^{2}}$	$Y_{2, \cos 2 \Phi}=(30 / 32 \pi)^{1 / 2} \sin ^{2} \Theta \cos 2 \Phi$	
$d_{x y}$	$Y_{2, \sin 2 \Phi}=(30 / 32 \pi)^{1 / 2} \sin ^{2} \Theta \sin 2 \Phi$	

Hydrogen-like particles

- The radial density function is suitable for characterizing the electron:

$$
P_{n, l}(r)=r^{2}\left|R_{n, l}(r)\right|^{2}
$$

(The probability that the electron with quantum numbers n, l is found within the spherical shell of radius r and thickness $\mathrm{d} r$)
The probability of finding the electron in the sphere with radius R is:

$$
w=\int_{0}^{R} P_{n, l}(r) \mathrm{d} r
$$

For the $1 s$ orbital
$\square r_{\max }=\frac{a_{0}}{Z}$
H atom: $r_{\text {max }}=a_{0}$

Hydrogen-like particles

- The radial density function is suitable for characterizing the electron:

Hydrogen-like particles

- The radial density function is suitable for characterizing the electron:

Hydrogen-like particles

Spectra of hydrogen-like particles:

- The photon with c Speed emitted during the $n_{2} \rightarrow n_{1}$ (where $n_{2}>n_{1}$) electron transition has an energy that is identical to the energy difference between the initial and final states.
-The wavelength of the photon:
$\frac{1}{\lambda}=R_{\infty}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
$R_{\infty}=\frac{\mu Z^{2} e^{4} \quad \text { Rydberg constant }}{8 \varepsilon_{0}^{2} h^{3} c}=1.09737 \cdot 10^{5} \mathrm{~cm}$

1 s

Hydrogen-like particles

- The absolute value of the angular momentum arising from the movement of the electron around the nucleus (orbital angular momentum):

$$
|\mathrm{L}|=\sqrt{l(l+1)} \hbar
$$

the component of the angular momentum in direction z :

$$
L_{z}=m \hbar
$$

- Experience shows that electrons have angular momentum even if they do not move around a nucleus (intrinsic angular momentum or spin), this is an inherent property of particles.

$\|\mathrm{S}\|=\sqrt{s(s+1)} \hbar$ and $S_{z}=m_{s} \hbar$	The total wave function of the electron (including spin) :		
where $S=\frac{1}{2}$ (spin quantum number)	$\Psi_{n, l, m, \frac{1}{2}}=\Psi_{n, l, m} \alpha$		
$m_{s}= \pm \frac{1}{2}$ (spin states)	$\Psi_{n, l, m,-\frac{1}{2}}=\Psi_{n, l, m} \beta$	\quad	α and β (spin functions)
:---			

Hydrogen-like particles

	For a single energy value, there are $2 \sum_{l=0}^{n-1}(2 l+1)=2 n^{2}$ wave functions (degree of degeneration)
$\|\mathrm{S}\|=\sqrt{s(s+1)} \hbar \text { and } S_{z}=m_{s} \hbar$ where $S=\frac{1}{2} \quad$ (spin quantum number) $m_{s}= \pm \frac{1}{2}$ (spin states) α and β (spin functions)	The total wave function of the electron (including spin) : $\begin{aligned} & \Psi_{n, l, m, \frac{1}{2}}=\Psi_{n, l, m} \alpha \\ & \Psi_{n, l, m,-\frac{1}{2}}=\Psi_{n, l, m} \beta \end{aligned}$

Hydrogen-like particles

- It is not only electrons that have spin

Fermions have half-integer spins,
Bosons have integer spins.

$m_{s}=-s,-(s-1), \ldots,(s-1), s$ (spin states)

Multielectron particles

- Assume that the interaction with the N electrons with each other is negligible.
- Electrons are individually characterized by N independent $\mathrm{Schrödinger}$ equations.
- E.g. for electron i then:

$$
\left[-\frac{\hbar^{2}}{2 \mu} \sum_{i=1}^{N} \Delta_{i}+\frac{e^{2}}{4 \pi \varepsilon_{0}}\left(-\frac{Z}{r_{i}}\right)\right] \Psi_{i}(i)=E_{i} \Psi_{i}(i)
$$

(A suitable number of electrons placed on the orbitals of a hydrogen-like atom.) - The wave function of the electron characterized by quantum numbers

Multielectron particles

The simplest approach: independent particles

- It is impossible to have two electrons with the same four quantum numbers within a single atom.
- An atomic orbital can host only 2 electrons (Pauli's exclusion principle).

$$
\begin{array}{|ll|l}
\hline n=1,2,3,4, \ldots & K, L, M, N, \ldots & \text { Shell } \\
l=0,1,2,3, \ldots & s, p, d, f, \ldots & \text { Subshell }
\end{array}
$$

Electron configuration: shows how many electron are on individual subshells (e.g.: $\mathrm{Ne}: 1 s^{2} 2 s^{2} 2 p^{6}$) The total wave function of the atom is the product of the electron wave functions: $\quad \Psi(1,2, \ldots, N)=\Psi_{1}(1) \Psi_{2}(2) \ldots \Psi_{N}(N)$

- The total energy is the sum of the individual energies:

$$
E=E_{1}+E_{2}+\ldots+E_{N}
$$

Energy minimum: the ground state is the one with the lowest energy.

Multielectron particles
 Approximation using independent particles:

 Hartree's SCF (Self-Consistent Field) methodThe multiparticle Schrödinger equation is separated into individual particles, but the interaction between the particles is considered.

$$
\begin{gathered}
\Psi(1,2, \ldots, N)=\Psi_{1}(1) \Psi_{2}(2) \ldots \Psi_{N}(N) \begin{array}{c}
\begin{array}{c}
\text { (the same as in the } \\
\text { previous case) }
\end{array} \\
{\left[-\frac{\hbar^{2}}{2 \mu} \Delta_{i}+\frac{e^{2}}{4 \pi \varepsilon_{0}}\left(-\frac{Z}{r_{i}}\right)+v_{i}\left(r_{i}\right)\right] \Psi_{i}(i)=E_{i} \Psi_{i}(i)} \\
\underbrace{\text { electron } i \text { with all other electrons }}_{\text {potential energy arising form the interaction of }}
\end{array} \\
v_{i}\left(r_{i}\right)=\frac{e^{2}}{4 \pi \varepsilon_{0}} \sum_{\substack{j=1 \\
j \neq i}}^{N} \frac{\left|\Psi_{j}(j)\right|^{2}}{r_{i j}} \mathrm{~d} V_{j} \text { where } i=1,2, \ldots, N
\end{gathered}
$$

Multielectron particles
 Approximation using independent particles: Hartree's SCF (Self-Consistent Field) method

- Average charge density arising from the movement of electron j :

$$
-e\left|\Psi_{j}(j)\right|^{2}
$$

- Divide this charge cloud into small part with volume $\mathrm{d} V_{j}$.
- In such a part, the point charge is $-e\left|\Psi_{j}(j)\right|^{2} \mathrm{~d} V_{j}$.
- For electron i, this contributes $e^{2}\left|\Psi_{j}(j)\right| 2 /\left(4 \pi \varepsilon_{0} r_{i j}\right)$
to the electrostatic potential
- The total potential energy arising from the charge of electron j is calculated as the sum/integral of this small point charges.

$$
v_{i}\left(r_{i}\right)=\frac{e^{2}}{4 \pi \varepsilon_{0}} \sum_{\substack{j=1 \\ j \neq i}}^{N} \int \frac{\left|\Psi_{j}(j)\right|^{2}}{r_{i j}} \mathrm{~d} V_{j} \text { where } i=1,2, \ldots, N
$$

Multielectron particles

Approximation using independent particles: Hartree's SCF (Self-Consistent Field) method

The Schrödinger equation is often solved iteratively:

1. Initially, the wave functions $\Psi_{1}, \ldots, \Psi_{N}$ hare approximated by the orbitals of hydrogen-like atoms,
2. the potentials $v_{i}\left(r_{i}\right)$ are calculated and the Scrödinger equation is solved.

Step 2 is repeated until one iteration step does not change the Ψ_{1}, \ldots, Ψ_{N} functions any more.

$$
\begin{aligned}
& \Psi(1,2, \ldots, N)=\Psi_{1}(1) \Psi_{2}(2) \ldots \Psi_{N}(N) \\
& E=\int \Psi^{*} H \Psi \mathrm{~d} V
\end{aligned}
$$

Multielectron particles
 Approximation using independent particles: Hartree-Fock SCF method

The total wave function of an atom is given in the form of a determinant, - tries to account for the equivalence of electrons.

The wave function of particles with half-integer spin can only be antisymmetric (this is Pauli's exclusion principle in a general form):

$$
\Psi(1,2, \ldots, N)=-\Psi(2,1, \ldots, N)
$$

$$
\begin{aligned}
& \text { Slater determinants: } \\
& \Psi(1,2, \ldots, N)=c \left\lvert\, \begin{array}{cccc}
\Psi_{1}(1) & \Psi_{2}(1) & \cdots & \Psi_{N}(1) \\
\Psi_{1}(2) & \Psi_{2}(2) & \cdots & \Psi_{N}(2) \\
\vdots & \vdots & & \vdots \\
\Psi_{1}(N) & \Psi_{2}(N) & \cdots & \Psi_{N}(N)
\end{array}\right.
\end{aligned}
$$

The wave function of a closed shell system (noble gas atom, alkali meta ions) consist of a single Slater determinant.

Multielectron particles
Approximation using independent particles: Hartree-Fock SCF method

Calculations can be carried out for every atom and ion,
the relative error of the total energy is about 1%,
this is in the order of the energy changes of the valence shell,
\rightarrow ionization and excitation energies obtained by this method are not very accurate.

