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Multiparticle systems

• Previous part: principles of quantum mechanics
applied for systems with a single particle

• Atoms and molceules: simultaneous presence of several particles

• In a system of N particles, these particles do not have individual states, 
the system can only be characterized with a joint wave function:

Ψ(x1,y1,z1,ms1,x2,y2,z2,ms2,…,xN,yN,zN,msN,t)

spin coordinates

or Ψ(1,2,…,N,t)

• The probability that the individual particles will be found in the region 

with volume dV = dV1·dV2·…·dVN around the coordinates:

Ψ*(1,2,…,N,t)Ψ(1,2,…,N,t)dV

• The state equation (Schrödinger equation):

2

1i 2

N

j
j j

V
t 


      

  

2 2 2

2 2 2j
j j jx y z

  
   

  

Laplace operator: derivation with 

respect to spatial coordinate j:
the total interaction 
energy  of particles

Multiparticle systems

• Annak a valószínűsége, hogy az egyes részecskék egyidejűleg a 

koordinátáik köré írt dV = dV1·dV2·…·dVN térfogatban 
tartózkodnak:

Ψ*(1,2,…,N,t)Ψ(1,2,…,N,t)dV

• Az állapotegyenlet (Schrödinger-egyenlet) alakja:

• The stationary Schrödinger equation:
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• Solving the Schrödinger equation of multiparticle systems is often 
very complicated

• Approximation methods are necessary
e.g. principle of variation

• The appropriate Hamilton operator:
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Multiparticle systems
• Elementary particles in atoms:

• Size of the nucleus: 10–15 m (nuclear physics, nuclear chemistry)
• Electron cloud (quantum mechanics:

– the nucleus is considered to be a point charge
– the nucleus is practically stationary relative to the

center of mass of the atom)

The structure of atoms

proton neutron electron

mass (kg) 1.67262·10–27 1.67493·10–27 9.10939·10–31

charge (C) 1.60218·10–19 (e) 0 –1.60218·10–19 (-e)

Hydrogen-like particles
• nucleus with Ze charge
• a single electron

e.g.: H, He+, Li2+, Be3+, U91+

• The interaction between the nucleus and the electron is given by the 
Coulomb potential:

• The stationary Schrödinger equation
for the movement of the electron:
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vacuum permittivity 
(8.85419·10–12 J–1C2m–1)
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• The stationary Schrödinger equation  
for the movement of the electron:

• In a spherical coordinate system:
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r: radius

Φ: azimuth

Θ: polar angle
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n = 1,2,3,…

l = 0,1,2,…,(n–1)

m = –l, –(l–1),…,0,…,(l–1),l

Hydrogen-like particles
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n = 1,2,3,…

l = 0,1,2,…,(n–1)

m = –l, –(l–1),…,0,…,(l–1),l

Hydrogen-like particles
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radial wave function

and
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 associated Laguerre polynomial
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l = 0,1,2,…,(n–1)

m = –l, –(l–1),…,0,…,(l–1),l

Hydrogen-like particles
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radial wave function
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Bohr radius:
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m = –l, –(l–1),…,0,…,(l–1),l

Hydrogen-like particles
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radial wave function
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n = 1,2,3,…

l = 0,1,2,…,(n–1)

m = –l, –(l–1),…,0,…,(l–1),l

associated Legendre polynomial
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Hydrogen-like particles
r: radius

Φ: azimuth

Θ: polar angle
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same as the wave function of 
a particle moving on the 

surface of a sphere angular wave function
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Hydrogen-like particles
r: radius

Φ: azimuth

Θ: polar angle

, , , ,( ) ( , )n l m n l l mR r Y   

same as the wave function of 
a particle moving on the 

surface of a sphere angular wave function

2 4

2 2 2
0

1

(4 ) 2n

Z e
E

n




 


• Conventions for designating Ψn,l,m wave functions:

n = 1,2,3,4,… the number itself

l = 0,1,2,3,… s,p,d,f,…

m = –l, –(l–1),…,0,…,(l–1),l subscript (if needed)

Hydrogen-like particles

and , , , ,( ) ( , )n l m n l l mR r Y   
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• Radial wave function of hydrogen-like particles:

orbital radial wave function
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   radial wave function
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Hydrogen-like particles
orbital angular wave function
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To obtain real atomic 
orbitals the real 
combinations of complex 

Yl,m functions, (i.e.

Yl,cosmΦ and Yl,sinmΦ) 
are used:

Hydrogen-like particles

orbital angular wave function
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Hydrogen-like particles
orbital angular wave function
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Hydrogen-like particles

For a single energy value, 
there are

wave functions
(degree of degeneration)

1
2

0

(2 1)
n

l

l n




 

n = 1

Hydrogen-like particles

For a single energy value, 
there are

wave functions
(degree of degeneration)
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For the 1s orbital:
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Hydrogen-like particles

2
, ,( ) ( )n l n lP r r R r

,

0

( )d
R

n lw P r r 

• The radial density function is suitable for characterizing the electron:

(The probability that the electron with quantum numbers n,l is found 

within the spherical shell of radius r and thickness dr)

• The probability of finding the electron in the sphere with radius R is:
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Hydrogen-like particles
• The radial density function is suitable for characterizing the electron:

and the average distance from the nucleus:
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Hydrogen-like particles
• The radial density function is suitable for characterizing the electron:

Spectra of hydrogen-like particles:

• The photon with c Speed emitted during the n2→n1 (where n2 > n1) 
electron transition has an energy that is identical to the energy difference 
between the initial and final states.

•The wavelength of the photon: 4s  4p  4d  4f
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Hydrogen-like particles

Rydberg constant
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Eionization = hcR∞

Hydrogen-like particles
Spectra of hydrogen-like particles:

• The photon with c Speed emitted during the n2→n1 (where n2 > n1) 
electron transition has an energy that is identical to the energy difference 
between the initial and final states.

•The wavelength of the photon:
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Rydberg-állandó

486.2 nm

656.3 nm

Hydrogen-like particles
Spectra of hydrogen-like particles:

• The photon with c Speed emitted during the n2→n1 (where n2 > n1) 
electron transition has an energy that is identical to the energy difference 
between the initial and final states.

•The wavelength of the photon:

• The absolute value of the angular momentum arising from the movement 
of the electron around the nucleus (orbital angular momentum):

the component of the angular momentum in direction z:

• Experience shows that electrons have angular momentum even if they 
do not move around a nucleus  (intrinsic angular momentum or spin), this 
is an inherent property of particles.
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(spin quantum number)
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The total wave function of 
the electron (including 
spin) :
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Hydrogen-like particles
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Hydrogen-like particles

S ( 1)s s   z sS m 
(spin quantum number)

(spin states)

1
2s 

1
2sm  
(spin functions)a and b

The total wave function of 
the electron (including 
spin) :
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and

where

• It is not only electrons that have spin
• Fermions  have half-integer spins,

Bosons have integer spins.

(spin states), ( 1),..., ( 1),sm s s s s    

electron
proton

neutron
photon
a-particle

Enrico Fermi
(1901-1954)

Satjendra Nath Bose
(1894-1974)

Hydrogen-like particles

• The stationary Schrödinger equation of the system:

• Solution is only possible by approximation.

• A rather complicated variational probe function (i.e. one with many 
parameters) is needed to obtain good approximations in simple systems.

• The independent particle approach make it possible to handle the 
electron structure in a way easy to visualize.

Z: atomic number

N: number of electrons
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distance between 
the electron and 

the nucleus

distance between 
two electrons

Multielectron particles Multielectron particles

• Assume that the interaction with the N electrons with each other is 
negligible.

• Electrons are individually characterized by N independent Schrödinger 
equations.

• E.g. for electron i then:

(A suitable number of electrons placed on the orbitals of a hydrogen-like atom.)
• The wave function of the electron characterized by quantum numbers  

(n,l,m,ms):
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atomic orbital
spin function

electron orbital 
(spin orbital)

• It is impossible to have two electrons with the same four quantum 
numbers within a single atom.
• An atomic orbital can host only 2 electrons (Pauli’s exclusion principle).

Electron configuration: shows how many electron are on 

individual subshells (e.g.: Ne: 1s22s22p6)
• The total wave function of the atom is the product of the electron wave 
functions:

• The total energy is the sum of the individual energies:

• Energy minimum: the ground state is the one with the lowest energy.

n = 1,2,3,4,… K,L,M,N,…

l = 0,1,2,3,… s,p,d,f,…

1 2(1, 2,..., ) (1) (2)... ( )NN N   

1 2 ... NE E E E   

Shell

Subshell

Multielectron particles
The simplest approach: independent particles

• The multiparticle Schrödinger equation is separated into individual 
particles, but the interaction between the particles is considered.

1 2(1, 2,..., ) (1) (2)... ( )NN N   

Approximation using independent particles: 
Hartree’s SCF (Self-Consistent Field) method

(the same as in the 
previous case)
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  i = 1,2,…,N

potential energy arising form the interaction of     

electron i with all other electrons

Multielectron particles

where
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• Average charge density arising from the movement of electron j:

-e│Ψj(j)│2

• Divide this charge cloud into small part with volume dVj.

• In such a part, the point charge is -e│Ψj(j)│2dVj.

• For electron i, this contributes e2│Ψj(j)│2/(4πε0rij)
to the electrostatic potential.

• The total potential energy arising from the charge of electron j is 
calculated as the sum/integral of this small point charges.

Multielectron particles
Approximation using independent particles: 
Hartree’s SCF (Self-Consistent Field) method
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  i = 1,2,…,Nwhere

The Schrödinger equation is often solved iteratively:

1. Initially, the wave functions  Ψ1, …, ΨN hare approximated by the 
orbitals of hydrogen-like atoms,

2. the potentials vi(ri) are calculated and the Scrödinger equation is 
solved.

• …

• Step 2 is repeated until one iteration step does not change the Ψ1, 
…, ΨN functions any more.

1 2(1, 2,..., ) (1) (2)... ( )NN N   

dE H V  

Multielectron particles
Approximation using independent particles: 
Hartree’s SCF (Self-Consistent Field) method

• The total wave function of an atom is given in the form of a determinant,

• tries to account for the equivalence of electrons.

• The wave function of particles with half-integer spin can only be 
antisymmetric (this is Pauli’s exclusion principle in a general form):

Slater determinants:

• The wave function of a closed shell system (noble gas atom, alkali metal 
ions) consist of a single Slater determinant.
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Multielectron particles
Approximation using independent particles: 

Hartree–Fock SCF method

• Calculations can be carried 
out for every atom and ion,

• the relative error of the total 
energy is about 1%,

• this is in the order of the 
energy changes of the 
valence shell,

→ ionization and excitation 
energies obtained by this 
method are not very accurate.

Multielectron particles
Approximation using independent particles: 

Hartree–Fock SCF method


