Birth of quantum physics

Max Planck
$(1858-1947)$ (1858-1947)

Niels Bohr
N(1885-1962)
 Erwin Schrödinger

Birth of quantum physics

Temperature (black body) radiation, thermal light sources

- He studied black body radiation on the basis of classical mechanics.
- He considered the electromagnetic field to be a multitude of harmonic oscillators.
- The presence of light of the given v frequency was interpreted by the excitation of the same
frequency electromagnetic oscillator.
- He used the classical equipartition theorem ($1 / 2 k T$ of energy for each degree of freedom) to calculate the average energy of the oscillators.

Birth of quantum physics

The quantum hypothesis
Planck: Small oscillators emitting radiation can only have energy values which is a multiple of a given energy dose. (The energy is quantized at a specified frequency and can be given as follows: $E=n h v$,
$h=6.626 \cdot 10^{-34} \mathrm{Js}$, Planck's constant

Birth of quantum physics

Temperature (black body) radiation, thermal light sources

Birth of quantum physics

Temperature (black body) radiation, thermal light sources

- He studied black body radiation on the basis of classical mechanics.
- He considered the electromagnetic field to be a multitude of harmonic oscillators.
- The presence of light of the given v frequency was interpreted by the excitation of the same frequency electromagnetic oscillator.
- He used the classical equipartition theorem ($1 / 2 k T$ of energy for each degree of freedom) to calculate the average energy of the oscillators.

Birth of quantum physics

> The photoelectric effect

- The photoelectric effect is the emission of electrons or other free charge carriers when light falls on a material. Electrons emitted in this manner are called photoelectrons. Their energy can be measured

Lectrons are dislodged only by the impingement of photons when those photons reach exceed a threshold frequency (energy) characteristic to the metal.
Below that threshold, no electrons are emitted from the material regardless of the light
The ly or the length of time of exposure to the light.
radiation, but does not depend on its intensity.

- The number of emitted electrons depends on the intensity of the radiation

Birth of quantum physics

The photoelectric effect

- The photoelectric effect is the emission of electrons or other free charge carriers when light falls on a material. Electrons emitted in this manner are called photoelectrons. Their energy can be measured:
- Electrons are dislodged only by the impingement of photons when those photons reach
or exceed a threshold frequency (energy) characteristic to the metal.
- Below that threshold, no electrons are emitted from the material regardless of the light
intensity or the length of time of exposure to the light.
-The kinetic energy of the emitted electrons is linearly dependent on the frequency of
radiation, but does not depend on its intensity.
-The number of emitted electrons depends on the intensity of the radiation. $\frac{1}{2} m_{e} v^{2}=h v-E_{b i n d i n g}$

metal sheet

Albert Einstein
$(1879-1955)$

Birth of quantum physics

Compton effect

- He examined the scattering of X-rays on electrons.
- The wavelength of the scattered radiation increases slightly.
- The value of increase is a well-defined, single value.
- The increase depends on the scattering angle, but does not depend on the wavelength of the incident radiation.
$\mathrm{d} \lambda=\lambda_{C}(1-\cos \Theta)$ where $\lambda_{C}=2.43 \mathrm{pm}$
the Compton-wavelength of an electron

Photons have not only their energy but also momentum:

$$
p=\frac{h \nu}{c}=\frac{h}{\lambda}
$$

During the collisions, conservation of energy and conservation
of momentum should be valid:

$$
\lambda_{c}=\frac{h}{m_{e} c}=2.426 \mathrm{pm}
$$

Birth of quantum physics

Electron diffraction

Clinton Davisson and Lester Germer

- guided a beam of electrons through a crystalline lattice They got a diffraction image
When an electron beam is bent on polycrystalline material, then Debey-Scherrer rings will be in the deflection image of the interference enhancement site -The deflection image can be interpreted well on the basis of the Bragg equation describing the crystal diffraction:
$2 d \sin \Theta=k \lambda$
(where d is the lattice constant, Θ is the angle between
the lattice plane and the incident beam, λ is the
wavelength of the electron, k is the order of diffraction)

Birth of quantum physics

Clinton Davisson and Lester Germer

- guided a beam of electrons through a crystalline lattice. -They got a diffraction image
When an electron beam is bent on polycrystalline material, then Debey-Scherrer rings will be in the deflection image of the interference enhancement sites. -The deflection image can be interpreted well on the basis of the Bragg equation describing the crystal diffraction:
$2 d \sin \Theta=k \lambda$
(where d is the lattice constant, Θ is the angle between
the lattice plane and the incident beam, λ is the
wavelength of the electron, k is the order of diffraction)
Louis de Broglie:
- He assigned a wavelength to each particle:

$$
\lambda=\frac{h}{p}
$$

Louis de Broglie
$(1892-1987)$
 EXPERIMENT

Birth of quantum physics

Heisenberg's uncertainty principle

- It states that the more precisely the position of some particle is determined, the less precisely its momentum ($p=m v$) can be known, and vice versa. So, classical mechanical description (orbit definition) is not possible.
-Whatever method of measurement is chosen, the interaction between the measuring device and the particle in the measured characteristics causes some indeterminacy. The smaller the
inprecision in one of the measured features, the greater the other
Mathematically: reduced Planck constant
$\Delta x \Delta p_{x} \geq \frac{1}{2} \hbar$ where $\hbar \quad .05 \cdot 10^{-34} \mathrm{JS}$
- It does not have any particular effect on macroscopic bodies, but it does have an effect on atomic size particles.

Birth of quantum physics

Heisenberg's uncertainty principle

- It states that the more precisely the position of some particle is determined, the less precisely its momentum ($p=m v$) can be known, and vice versa. So, classical mechanical description (orbit definition) is not possible.
- Whatever method of measurement is chosen, the interaction between the measuring device and the particle in the measured characteristics causes some indeterminacy. The smaller the imprecision in one of the measured features, the greater the other.
- Mathematically: $\Delta x \Delta p_{x} \geq \frac{1}{2} \hbar$ where $\hbar \quad$ Planck constant
- It does not have any particular effect on macroscopic bodies, but it does have an effect on atomic size particles.
- No physical phenomenon can be represented with arbitrary precision as "classic point-like particle" or wave.
- The microscopic situation is best described by wave-particle duality, dealing with cases where neither the particle nor the wave property is a fully suitable approach.
- The uncertainty principle is sometimes mistakenly explained by the fact that the measurement of the particle location necessarily disrupts the momentum of the particle. The non-classical characteristics of quantum mechanical uncertainty measurements were clarified thanks to the Einstein-Podolsky-Rosen paradox.

Werner Heisenberg

 (1901-1976)
Birth of quantum physics

Heisenberg's uncertainty principle

- It states that the more precisely the position of some particle is determined, the less precisely its momentum ($p=m v$) can be known, and vice versa. So, classical mechanical description (orbit definition) is not possible.
- Whatever methed of measurement is chosen, the interaction between the measuring device and the particle in the measured characteristics causes some indeterminacy. The smaller the imprecision in one of the measured features, the greater the other
- Mathematically: \quad Planck constan
$\Delta x \Delta p_{x} \geq \frac{1}{2} \hbar$ where $\hbar \quad .05 \cdot 10^{-34} \mathrm{JS}$
- It does not have any particular effect on macroscopic bodies, but it
does have an effect on atomic size particles.
$m=1 \mathrm{~kg}$
$\Delta x=10^{-4}$
$\Delta x=10^{-4} \mathrm{~m}$
Uncertainty of speed:
$\Delta v \sim 10^{-30} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& m_{e}=9.1 \cdot 10^{-31} \mathrm{~kg} \\
& \Delta x=10^{-10} \mathrm{~m} \\
& \downarrow \\
& \text { Uncertainty of speed: } \\
& \Delta v \sim 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Equation of state

- When $\Psi(x, y, z, 0)$ is known, the value of $\Psi(x, y, z, t)$ can be calculated using
the Schrödinger equation.
- The Schrödinger equation can be extended to the event when the test particle
interacts in time.
- The Schrödinger equation is an axiom
- The equation of motion of quantum mechanics (equation of state or Schrödinger
equation) on a particle moving in conservative field is
equation) on a particle moving in conservative field is:

Free particle

- The simplest quantum mechanical object, but in reality it is only valid for a short time. - It does not interact with other physical objects, its potential energy is constant. The stationary Schrödinger equation of the free particle in 1D:

$$
\frac{\mathrm{d}^{2} \Psi}{\mathrm{~d} x^{2}}=-\alpha^{2} \Psi \quad \text { where } \alpha^{2}=\frac{2 \mu E}{\hbar}
$$

-The solution of the equation:

$$
\begin{aligned}
& \text { ution of the equation: } \\
& \Psi(x)=N \mathrm{e}^{\mathrm{i} \alpha x} \text {, and since } T(t)=\mathrm{e}^{-\frac{\mathrm{i} E t}{\hbar}} \\
& \text { constant independent of place }
\end{aligned}
$$

For the full wave function of the stationary state:
$\Psi(x, t)=\Psi(x) T(t)=N \mathrm{e}^{\mathrm{i}\left(\alpha x-\frac{E t}{\hbar}\right)}, J\left[\cos \left(\alpha x-\frac{E t}{\hbar}\right), \ldots \ldots(\ldots \quad E t)\right]$

- The Ψ function describes a a wave that is periodic both in space and time, for which:

Stationary Schrödinger equation

-The solution of the state equation gives a time-dependent residence probability.

- The probability of electron residence in an atom free of external force (stationary state of electron) is independent of time

This is only true for all variable values if both sides are constant
(E, total energy of the particle). $\quad E=E_{\text {kinetic }}+V$

- So, the stationary Schrödinger equation is.

$$
-\frac{\hbar}{2 \mu} \quad Y \Psi=\overleftarrow{E}
$$

- Calculation of residence probability: $\Psi^{*} \Psi=\Psi^{*} \Psi$

Particle in a box

- The particle moves inside a box with impenetrable walls - At the walls, the potebtial is infinite, the particle wave function in the range of ($(\infty, 0)$ and $(a,+\infty)$ is zero.
- The Schrödinger equation (same as for the free particle

$$
\frac{\mathrm{d}^{2} \Psi}{\mathrm{~d} x^{2}}=-\alpha^{2} \Psi \quad \text { where } \alpha^{2}=\frac{2 \mu E}{\hbar}
$$

 General solution: $\Psi(x)=A \sin (\alpha x)+B \cos (\alpha x) \quad B=0$ Boundary condition (from the continuity of wave function): $\Psi(0)=\Psi(G) \approx d 0=n \pi$ Normalization: $A^{2} \int_{0}^{a} \sin ^{2}(\alpha x) \mathrm{d} x=1$ $E_{n}=\frac{n^{2} \pi^{2} \hbar}{2 \mu a^{2}}$

$$
\Psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)
$$

Particle in a box

2D box

- Stationary Schrödinger equation for 2 D :

$$
\left.-\frac{\hbar}{2 \mu\left(\partial x^{2}\right.}+\frac{\partial^{2} \Psi}{\partial y^{2}}\right)=E \Psi
$$

- In the case of 2D, there are two n value (n_{1} and n_{2}) to be taken into account.
- Separation of variables:

$\left.E=E^{X}+E^{Y}=-\frac{\hbar}{2 \mu\left(\mathrm{dx} x^{2}\right.}+\frac{\mathrm{d}^{2} Y}{\mathrm{~d} y^{2}}\right)$

Particle in a box

Tunneling effect

- If the potential energy of the particle enclosed in the box does not become infinite at the walls of the box, then the wave function of this place will not be reduced to a sudden zero.
- In the case of thin walls (where the potential energy is again zero after finite distance) the exponential is again zero after finite distance) the exponential decrease of the war follows.
- The pa
particle can be found outside the walls of the box, although - according to the classic mechanics - it has not enough energy to escape.
- Inside the potential barrier:

$$
\begin{aligned}
& V>0 \text { and } \\
& \frac{\mathrm{d}^{2} \Psi}{\mathrm{~d} x^{2}}=\frac{2 \mu(V-E) \Psi}{\hbar}
\end{aligned}
$$

- The solution of the equation:

$$
\Psi=A \mathrm{e}^{\kappa \mathrm{x}}+B \mathrm{e}^{-\kappa \mathrm{x}} \text { where } \kappa=\left.\left\{\frac{2 \mu(V}{\hbar}-E\right) \Psi\right|^{1 / 2}
$$

Heavy

Circular motion in quantum mechanics

$$
\begin{aligned}
& \text { - } \left.\frac{\hbar}{2 \mu\left(R^{2}\right.} \frac{\Psi}{\partial \Phi^{2}}\right)=E \Psi \text { or } \frac{\partial^{2} \Psi}{\partial \Phi^{2}}=-\frac{2 \mu E R^{2}}{\hbar} \\
& \text { Condition: } \Psi(\Phi)=\Psi(\Phi+2 \pi) \\
& \text { - Solution: } \Psi(\Phi)=N \mathrm{e}^{\mathrm{i} m \Phi}=N[\cos (m \Phi)+\mathrm{i} \sin (m \Phi)] \\
& \text { Stationary eneray values and wave function: } \\
& E_{m}=\frac{m^{2} \hbar}{2 \Theta} \quad \text { where } m=0, \pm 1, \pm 2 \ldots \\
& \Psi_{m}(\Phi)=\left(\frac{1}{2 \pi R}\right)^{1 / 2} \mathrm{e}^{\mathrm{i} m \Phi} \\
& \begin{array}{l}
\text { - If a given energy value is possible by more than one wave functions (state), } \\
\text { degeneracy is said to appear. } \\
\text { - All } m \neq 0 \text { energy values have a degeneracy of two. } \\
\text { Both in classical and quantum mechanics: } \quad E=\frac{L_{z}^{2}}{2 \Theta} \\
\text { - } \quad \begin{array}{l}
\text { direction } z
\end{array} L_{z}=m \hbar
\end{array}
\end{aligned}
$$

Circular motion in quantum mechanics

Motion on the surface of a sphere

- The full, three-dimensional form of the stationary Schrödinger equation.
- Two quantum numbers $(l=0,1,2 \ldots$ and $m=-l,(-l+1) \ldots 0 \ldots(l-1), l)$ appear in the solution:

Circular motion in quantum mechanics

Motion on the surface of a sphere

The full, three-dimensional form of the stationary Schrödinger equation.

- Two quantum numbers $(l=0,1,2 \ldots$ and $m=-l,(-l+1) \ldots 0 \ldots(l-1), l)$ appear in the solution:

- If a given energy value is possible by more than one wave functions (state), degeneracy is said to appear.
angular momentum in
- All $m \neq 0$ energy values have a degeneracy of two.

Both in classical and quantum mechanics:
direction z
$E=\frac{L_{z}^{2}}{2 \Theta} \quad L_{z}=m \hbar$

Circular motion in quantum mechanics

Motion on the surface of a sphere

- The full, three-dimensional form of the stationary Schrödinger equation - Two quantum numbers $(l=0,1,2 \ldots$ and $m=-l,(-l+1) \ldots 0 \ldots(l-1), l)$ appear in the solution:

$E=\frac{l(l+1) \hbar}{2 \Theta}$ and $\Psi_{l, m}=N_{l, m} P_{l}^{\|m\|}(\cos \Theta) \mathrm{e}^{\mathrm{i} m \Phi}$

Schrödinger's cat

- Schrödinger's cat is a thought experiment, sometimes described as a paradox, devised by Austrian physicist Erwin Schrödinger in 1935
- It illustrates what he saw as the problem of the Copenhagen interpretation of quantum mechanics applied to everyday objects
In the Coperhagen interpretation, a system stops being a superposition of states and becomes either one A
Thought experiment: A cat is penned up in a steel chamber, along with the following device (which must be secured against direct interference by the cat): in a Geiger counter, there is a toms decays, but also, with equal probability, perhaps none; if it happens, the counter tub discharges and through a relay releases a hammer that shatters a small flask of hydrocyanic
 if meanile no the first atomic decay would have poisoned it The psi function of function of the enire the expression) mixed or smeared out in equal parts
-This thought experiment makes apparent the fact that the nature of measurement, or observation, is not well-defined in this interpretation. The experiment can be interpreted to
 states "decayed nucleus/dead cal" and undecayed nucleus/iving cal, and thatonly when the box is opened and an observaion perfored does the wave fung a all two states
-However, Niels Bohr never had in mind the observer-induced collapse of the wave function as he did not regard the wave function as physically real, but a statistical tool; thus Schrödinger's cat did not pose any riddle to him.

Schrödinger's cat

Experimental tests:

-https://www.scientificamerican.com/article/bringing-schrodingers-quantum-cat-to-life/

Possible practical application: quantum computing

- Quantum computing is the use of quantum-mechanical phenomena such as superposition and entanglement to perform computation. A quantum computer is used to perform such computation, which can be implemented theoretically or physically. A quantum computer with a given number of qubits is fundamentally different from a classical computer composed of the same number of classical bits. For example, representing the state of an n-qubit system on a classical computer requires the storage of 2^{n} complex coefficients, while to characterize the state of a classical n-bit system it is sufficient to provide the values of the n bits, that is, only n numbers. Although this fact may seem to indicate that qubits can hold exponentially more information than their classical counterparts, care must be taken not to overlook the fact that the qubits are only in a probabilistic superposition of all of their states

Schrödinger's cat

