#### **REACTION KINETICS AND** REACTION MECHANISMS

#### Different levels of dealing with reaction rates:

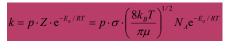
- II. REACTION MECHANISMS molecular level-- interpretation
- III. THEORIES OF REACTION RATES

#### **III. THEORIES OF REACTION RATES AND RATE CONSTANTS**

- Starting point: temperature dependence of k
- Arrhenius theory (Arrhenius, 189X)

#### $k = A \cdot e^{-E_a / RT}$

<u>Collision theory</u> (Arrhenius, McLewis, 1918)



 collisions, steric factor, reactive collisions, harpoon mechanism (mainly gas phase reactions)

#### **III. THEORIES OF REACTION RATES AND RATE CONSTANTS**

- Activated complex theory (Eyring, Polányi, 193x), general, useful for solution reactions.  $k = k^{\#} \cdot K^{\#} = \kappa \cdot \frac{k_B T}{\kappa} \cdot \overline{K} = \kappa \cdot \frac{k_B T}{\kappa} \cdot e^{A^{\#} S/R} \cdot e^{-A^{\#} H/RT}$ 

  - thermodynamic approach (entropy, enthalpy and free energy of activation)
  - quantum mechanical approach (potential surfaces, trajectories)
  - statistical mechanical approach
- The three different approaches complement each other.

#### Temperature dependence of rate constants

- General (but not infallible) quideline: an increase in T causes an increase in v (both for exothermic and endothermic reactions).
- Thermostatting is important! Semiguantitative: a factor of 2-3× for each 10°C 👔
- Fully quantitative: the T dependence of k:
  - $k = A \exp(-B/T)$ .
  - Logarithmic form:  $\ln k = \ln A B/T$

#### Temperature dependence of rate constants

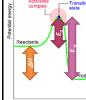
• The Arrhenius plot often gives a straight line:

n k

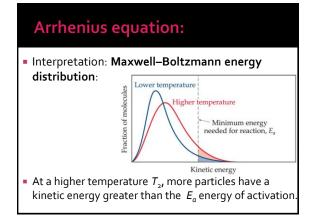
- slope: -E<sub>a</sub>/R
- intercept (extrapolation to 1/T = 0): InA
- A: pre-exponential factor (Later terminology: collision constant)
- Occasionally:
  - a) curvature or break point: multistep reaction;
  - b) negative *T*-dependence: exothermic pre-equilibrium.

## Arrhenius equation:

- E<sub>a</sub> activation energy: the excess energy needed for a reactive collision vs. an average collision.
- No interpretation for the pre-exponential factor A.
- In the observed  $k = A e^{-B/T}$  equation,  $B = E_o/R$



- *E<sub>a</sub>* is visualized on a reaction profile as shown in the figure.
- *E<sub>a</sub>* is important to understand the temperature dependence of k and to classify the reaction intermediates.



#### Arrhenius equation:

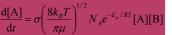
- Theoretical objectives: to derive the experimentally observed equation form the model and find a way to obtain the parameters from more fundamental properties.
  - Activation energy *E<sub>a</sub>* was a characteristic reaction parameter that could not be calculated in any theoretical way.
  - A was not interpreted by Arrhenius originally.
- Importance: Svante Arrhenius started the development of reaction rate theories. (He was awarded the Nobel prize for the theory of electrolytic dissociation.) The core idea is still considered to be valid.

# Collision theory (gas phase reactions):

- (more modern terminology than originally used)
- For the A + B  $\rightarrow$  P reaction,  $v = k_2[A][B]$
- **Core idea**: the reaction rate is the product of a collision  $(z_{AB})$  and a probability (*f*) factor:  $d\mathcal{N}_{A}$ 
  - The probability factor *f* is a Boltzmann factor (or energy factor):  $f = e^{-E_a/RT}$
  - The collision factor  $z_{AB}$  is borrowed from the statistical model (kinetic theory) of gases:  $z_{AB} = \sigma \left(\frac{8k_BT}{N_A^2}\right)^{1/2} N_A^2$ [A][B]

#### Collision theory (gas phase reactions):

• The rate equation of the process then:



- A is interpreted by molecular parameters, but  $E_a$  remained experimental only.
- The first calculations for the 2HI → H<sub>2</sub> + I<sub>2</sub> reaction gave excellent agreement. In other processes, deviations were seen. Usual strategy: keep the core idea and introduce corrections:
- $\mu$  (reduced mass) unique, cannot be corrected,
- σ (collision cross section) is less strict, a correction of a factor of about 2 may be reasonable.

#### Collision theory (gas phase reactions):

- σ (collision cross section) is less strict, a correction of a factor of about 2 may be reasonable :
- A possible explanation is the use of the P steric factor: 1 – 10<sup>-3</sup>(10<sup>-4</sup>) may be acceptable.
- The  $\sigma^*$  reactive cross section is the product of the collision cross section and the steric factor:  $\sigma^* = P \cdot \sigma$



#### Collision theory (reactions in solution):

- In solution, there are characteristic molecular motions and "environmental" factors:
  - at 0.02 M concentration, the average reactant distance is  $\sim 10 \cdot d_A$
  - at 1 atm in a gas, the mean free path is  $\sim 10 \cdot d_A$
- no difference in the kinetics.
- For a reaction to occur, a collision and transformation of the reactants are needed:
  - collisions because of diffusion,
  - excess energy needed for a reactive collision.

### Collision theory (reactions in solution):

Based on elementary processes, there are:

 $E_a \sim o$ 

*E<sub>a</sub>* >> 0

- diffusion limited and
- energy limited reactions.

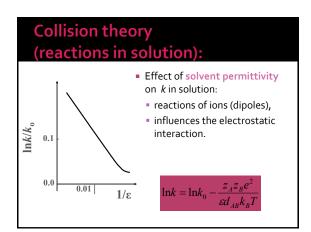
#### Collision theory (reactions in solution):

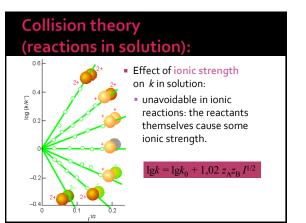
- The rate constant of diffusion limited bimolecular elementary reactions can be calculated based on the diffusion model.
- A molecules are stationary, B molecules move. The J matter flux on the  $4\pi r^2$  surface around A:  $J = 4\pi r^2 J$ , where J is the flux (Fick's first law):  $J = 4\pi r^2 D_{\rm B} d[{\rm B}]/{\rm d}r$
- Integration until  $R^*$  critical radius, introducing  $D = D_A + D_B$  and allowing for the diffusion of A gives:

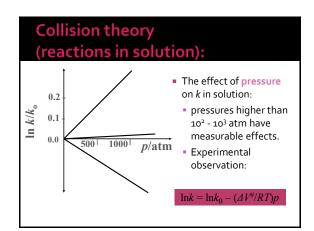
 $k_d = 4\pi R * DN_A$ 

#### Collision theory (reactions in solution):

- In most energy limited reactions the rate determining aspect is chemical activation. The exponential E<sub>a</sub> term appears in the rate constant k, and diffusion does not limit the rate any more (there are a lot of collision, few of which lead to reaction).
  - There is no theoretical minimum for bimolecular rate constants.
  - In practice, very slow reactions are not quite useful.
- Acceleration: T, c and catalyst(s).
- No theory for calculating E<sub>a</sub>.
- For this, some of the properties of the solutions are necessary to know:







#### Activated complex<sup>#‡</sup> theory:

 The starting point is the interaction between the reactant and not their collisions: in a primary interaction, and "activated complex" is formed, for which the formalism of equilibrium is still applicable – even though it reacts very rapidly so its lifetimes is very short (transition state).

•  $CH_3I + OH^2 \rightleftharpoons [HO-CH_3-I]^\# \rightarrow CH_3OH + I^2$ 

•  $CH_3OH + I \rightleftharpoons [HO-CH_3-I]^{\#} \rightarrow CH_3I + OH$ 

#### Activated complex<sup>#‡</sup> theory:

- Every elementary reaction has its own activated complex!
- The reverse reaction (always!) occurs through the same activated complex.
- In a multistep reaction, each step has its characteristic activated complex.
- The activated complex is formed from the reactants that appear in the rate equation and the orders of reaction give the composition.
- The solvent may participate in the activated complex, but this information is not available from experiments.
- The geometry of the activated complex is unique.

## Activated complex<sup>#‡</sup> theory:

• Core idea: in the elementary reaction A + B

■ stoichiometry:  $A + B \rightarrow P$   $v = k_2[A][B]$ ■ "mechanism":  $A + B \rightleftharpoons C^{\#}$   $K^{\#} = [C^{\#}]/[A][B]$  $C^{\#} \rightarrow P$   $v = k^{\#}[C^{\#}]$ 

 $d[P]/dt = k^{\#}[C^{\#}] = k^{\#}K^{\#}[A][B]$ , where  $k_2 = k^{\#}K^{\#}$ 

## Activated complex<sup>#‡</sup> theory:

 The activated complex is a maximum in energy along the reaction coordinate, the "easily" detectable steady state or pre-equilibrium intermediate(s) represent minima.



#### Activated complex<sup>#\*</sup> theory: thermodynamic approach

 If the activated complex is written as an equilibrium, thermodynamic formalism can be used:

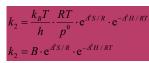
 $k_2 = k^{\#}K^{\#} = \frac{k_BT}{h} \cdot \frac{RT}{p^{\theta}} \cdot e^{-A^{\#}G/RT}$ 

• 
$$(\Delta G = -RT \ln K, \operatorname{so} K^{\#} = \frac{RT}{p^{\theta}} \times K)$$

- In this case:
- $\Delta^{\#}G = -RT \ln K = -RT \ln(p^{\theta}/RT)K^{\#}.$
- Therefore, the k<sub>2</sub> rate constant:

### Activated complex<sup>##</sup> theory: thermodynamic approach

• As  $\varDelta^{\#}G = \varDelta^{\#}H - T\varDelta^{\#}S$  is valid:

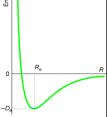


 $\varDelta^{\#}G$ : free energy of activation  $\varDelta^{\#}H$ : enthalpy of activation  $\varDelta^{\#}S$ : entropy of activation

 These are thermodynamic functions associated with 1 mol of activated complex.

## Activated complex<sup>##</sup> theory: quantum mechanical approach

The energy of two atoms as a function of their distance (as the only variable of the equation) can be described by a potential energy curve:



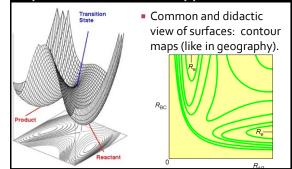
#### Activated complex<sup>#\*</sup> theory: quantum mechanical approach

- For three atoms, the reaction depends on three distances (or two distances and an angle).
- In this case, potential energy surfaces (hypersurfaces) must be calculated and plotted.
- Thus, 1 parameter is fixed: the angle is 180°, which means that the reactants are always in a single line. The reaction:
- $A-B+C \rightarrow [A-B-C]^{\#} \rightarrow A+B-C$
- (Specifically the  $H_2(\alpha\beta)$ +  $H(\gamma) \rightleftharpoons H(\alpha)$  +  $H_2(\beta\gamma)$  exchange reaction.)
- Axes: nuclear distances R<sub>AB</sub>, R<sub>BC</sub>; the energy of the activated complex (E<sub>pot</sub>) is plotted as a function of these distances.
- The calculation is carried out by complicated quantum chemical methods. The results are shown graphically:

#### Activated complex<sup>#\*</sup> theory: quantum mechanical approach

- A verbal description of the potential energy surface (PES):
  - The two "valleys" rise and meet in a saddle point, which is a local maximum in one direction and simultaneously a local minimum in the other (perpendicular) direction.
  - The maximum (along a given trajectory) corresponds to the maximum E<sub>a</sub> along the reaction coordinate.
  - The saddle point represents the activated complex.
  - The potential surface is only symmetric for an exchange reaction of the type H<sub>2</sub>(αβ) + H(γ)  $\rightleftharpoons$  H<sub>2</sub>(αγ) + H(β).

#### Activated complex<sup>#‡</sup> theory: quantum mechanical approach



#### Activated complex<sup>#\*</sup> theory: quantum mechanical approach

- A verbal description of the reaction path:
  - Reactant C is far away, bond distance  $R_{AB}$  did not change.
  - C approaches B (along the AB line), R<sub>BC</sub> decreases and R<sub>AB</sub> increases.
  - Simultaneously, the potential energy E<sub>pot</sub> of the system increases as it approaches the saddle point.
  - In the saddle point, which represent the activated complex, R<sub>AB</sub> and R<sub>BC</sub> are nearly the same, E<sub>pot</sub> reaches its maximum.
  - After the saddle point, *E*<sub>pot</sub> decreases, *R*<sub>BC</sub> also decreases (strengthening of the new bond), *R*<sub>AB</sub> increases and the old bond breaks entirely.
  - In the final state, only products A and BC exist.

### Activated complex<sup>#‡</sup> theory:

- Experimental detection of the activated complex
  - C<sup>#</sup> was a rational assumption for a long time as it has an extremely short life time (10<sup>-15</sup> s, femtosecond, fs).
  - Detection in a few simple gas reactions was achieved in the late 20<sup>th</sup> century:
  - Ahmed Zewail (1999, Nobel prize).

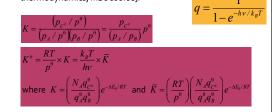


#### Activated complex<sup>#‡</sup> theory: statistical mechanical approach

- As seen earlier:  $k_2 = k^{\#}K^{\#}$
- The values of  $k^{\#}$  and  $K^{\#}$  must be computed.
  - $k^{\#}$ : the activated complex passes through the energy barrier and "oscillates away" with frequency v into the products.
  - $k^{\#} = \kappa v$
  - κ: transmission coefficient ( ~ 1), a measure of the possibilities of other transformations of the activated complex (e.g. "rotating away").

#### Activated complex<sup>#‡</sup> theory: statistical mechanical approach

The value of K<sup>#</sup> can be expressed by q partition function q [q, standard molar partition function in statistical thermodynamics, MSc course].



#### Activated complex<sup>#‡</sup> theory: Eyring plot

- Graphical determination of  $\Delta^{\#}G_{\ell}$ ,  $\Delta^{\#}H$  and  $\Delta^{\#}S$ : • we saw that  $k = \kappa \cdot \frac{k_B T}{h} \cdot \overline{K}$ , •  $\kappa \cdot \overline{K} = e^{-\Delta^{\#} G/RT}$  and
  - $\Delta^{\#}G = \Delta^{\#}H T\Delta^{\#}S,$ so:  $k = \frac{k_{B}T}{L} \cdot e^{\Delta^{\#}S/R} \cdot e^{-\Delta^{\#}H/RT}.$

  - After rearrangement:  $\frac{k}{T} = \frac{k_B}{k} \cdot e^{A^* S/R} \cdot e^{-A^* H/RT}$

Logarithmic form:  $\ln \frac{k}{T} = \ln \frac{k_B}{h} + \frac{\Delta^\# S}{R} - \frac{\Delta^\# H}{RT}$  for first-order rate constant

