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Different levels of dealing with reaction rates:

I. REACTION KINETICS
macroscopic level – mathematical description

II. REACTION MECHANISMS

molecular level– interpretation

III. THEORIES OF REACTION RATES
Arrhenius equation, collision and activated complex theories

 kinetics − mechanisms:
 observed fact− postulate
 unique − often multiple possibilities
 „trade”   − „art”
 Mechanism and its  role:  elementary reaction 

that interpret

a) the net stoichiometry of the process (observed 
intermediates if there are any) and

b) kinetic observations (the rate equation).

 rate equation ↔mechanism
2

 Elementary reaction: consumption of a few reactant 
molecules, the dissociation and formation of maximum    
1–2 bonds through a single activated complex. 
Elementary reactions are reversible! 

 types of elementary reactions and their rate equations:

▪ unimolecular
A → product(s)

▪ bimolecular (most common)                                                                          
A + B → product(s)    or    2A → product(s)

▪ termolecular (rare)                                                                         
A + B + C or A + 2B or  3A → product(s).

 Order of reaction and molecularity are the same! 3

 For elementary reactions, the rate equation can be 
deduced from the stoichiometry. For example:

▪ A → product(s) – d[A]/dt = k1[A] 

▪ A ⇌ B – d[A]/dt = k1[A] – k-1[B]

▪ A + B → product(s) – d[A]/dt = k2[A][B]

▪ 2A → product(s) – d[A]/dt = k2[A]2

▪ A + B + C → product(s) – d[A]/dt = k3[A][B][C]

▪ A + 2B → product(s)        – d[A]/dt = k3[A][B]2

 An elementary reaction is always reversible, but the 
rate of the reverse reaction is often negligible.
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 There is a single reactant, this is transformed into 
product(s) through decay, isomerization, inversion 
(cyclopropane → propene,  N2O5 → N2O3 + O2 …)

 Stoichiometry: A → P

 Rate equation: d[P]/dt = kexp[A]

▪ kexp: experimental rate constant

 Mechanism: bimolecular collisions are often 
assumed (but not a priori necessary). How can 
bimolecular collisions lead to first order? 
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 Lindemann–Hinshelwood mechanism:

▪ A + A ⇌A* + A k1 and  k-1

▪ A* → P k2

 The mechanism should lead to the 
experimentally observed rate equation for 
the production of P.

▪ The rate of product formation: d[P]/dt = k2[A*]

▪ [A*] is not measurable, but can be obtained from 
the mechanism:                                                                           
d[A*]/dt = k1[A]2 – k-1[A*][A] – k2[A*]

▪ The steady state approximation is used:  [A*] is 
low and constant, therefore d[A*]/dt = 0.
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 Lindemann–Hinshelwood mechanism:

▪ A + A ⇌A* + A k1 and  k-1

▪ A* → P k2

▪ The steady state approximation is used:  [A*] is 
low and constant, therefore d[A*]/dt = 0.

▪ The previous two points together:                                          
k1[A]2 – k-1[A*][A] – k2[A*] = 0

▪ A differential equation is turned into an  
algebraic equation!

▪ [A*] can be derived from this and substituted 
into the equation characterizing the        
production of P:
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 Stoichiometry: 2 NO(g) + O2(g) = 2 NO2(g)
 Kinetics: d[NO2]/dt = kexp[NO]2[O2]

 Mechanism:

a) Three-body collision. Feasible? If not:

b) Two bimolecular steps:

▪ a rapid pre-equilibrium: 2 NO ⇌ N2O2,   K1 = [N2O2]/[NO]2

▪ rate determining second step: N2O2 + O2 → 2 NO2

▪ The rate of product formation: ½ d[NO2]/dt = k2[N2O2][O2].  
[N2O2] is obtained from the equilibrium and substituted into the 
previous equation: d[NO2]/dt = 2 k2K1[NO]2[O2].

 The product kexp = 2k2K1 separated kinetically!
 K1 can only be measured in independent measurements. 8

 Other, equivalent mechanisms can also be postulated to 
interpret the same rate equation:

c) NO + O2⇌ NO·O2 K’ = [NO·O2]/[NO][O2]

NO·O2 + NO → 2 NO2

▪ After a derivation similar to the previous one:                                                      
½ d[NO2]/dt = k2 [NO·O2][NO]. 

▪ [NO·O2] can be given from the equilibria:                                            ½ 

d[NO2]/dt = k2K’[NO]2[O2]. This (also) agrees with the 
experimental rate equation.

 There is no way of distinguishing b) from c) kinetically.
 Detection of the intermediate – N2O2 or NO·O2 – may be 

decisive (e.g. spectrophotometrically).
9

 Second (o third) order with respect to H+ is common, e.g.                      
v = kexp[A][B][H+]2 A: BrO3

-, B: I-

a) Four-body collisions are completely unfeasible.

b) A possible mechanism:

A + H+⇌AH+ rapid protonation pre-equilibrium

AH+ + H+⇌AH2
2+ another rapid pre-equilibrium

B + AH2
2+ → product    slow rate determining step

▪ [AH2
2+] can be expressed from the two pre-equilibria:

v = k3K1K2[A][B][H+]2

 The product kexp = k3K1K2 cannot be separated kinetically.
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 ⊝ second (or third) order with respect to H+, for example:                                          
v = k’exp [AH2][B][H+]-2 AH2: oxalic acid

a) Possible mechanism: twice deprotonated reactant is involved in 
the rate determining step.

AH2⇌AH- + H+ rapid deprotonation pre-equilibrium

AH- ⇌A2- + H+ another rapid pre-equilibrium

B + A2- → products (slow) rate determining step

▪ [A2-] can be derived from the two pre-equilibria:

v = k’3K’1K’2[A][B][H+]-2

 The product k’exp = k’3K’1K’2 cannot be separated 
kinetically.
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 A reactant does not appear in the rate determining step.  

▪ Rationalization: this reactant only enters the mechanism after the 
rate determining step in a relatively fast process.

▪ E.g. halogenation of acetone: A + X2⇌AX + HX

▪ Kinetics: v = k[A][H+]

a) Mechanism:

▪ first step: acid catalyzed enolization; slow step:                                                            
CH3CO–CH3 + H+⇌ CH3COH=CH2 + H+

▪ second step: halogenation of the enol form; fast step:                                                                   
CH3COH=CH2 + X2 →CH3CO – CH2X + HX

 Message: kinetic data give very little information for 
processes after the rate determining step.
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 Enzymes: efficient, specific biocatalysts
 Stoichiometry:  
 Kinetics: initial rates are measured (because…):

13

PS E⎯→⎯

Initial enzyme concentration [Eo]

In
it

ia
l v

el
o

ci
ty

, v
o

 Two more observations:

▪ Maximum in the T-dependence. Arrhenius equation 
and denaturing.

▪ The pH-dependence also often shows a maximum. 
Amphoteric amino acids! 14

 Description of v–[S] curves:                     or

 Constants a and b have chemical meaning:

▪ a: as [S] increases, v saturates so that a further increase in [S] 
does not accelerate the product formation any more. In this case                    
[S] ≫ b, i.e. a = vmax.

▪ b: when b = [S], v = vmax/2 holds, so [S]1/2 = b. 

▪ Leonor Michaelis andMaud Leonora Menten (1912).
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Briggs-Haldane mechanism:

E + S ⇌ ES     k1 and k-1

ES → P + E k2, rate determining step

▪ Product formation: d[P]/dt = k2[ES]. What is [ES]?

▪ Both the rapid pre-equilibrium and steady-state 
approximations can be applied.

▪ Important: the overall enzyme concentration [E]0 is 
distributed between free enzyme [E] and enzyme-
substrate [ES] forms, so [E]0 = [E] + [ES] should be 
considered as a mass balance equation.
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a) steady state approximation:

▪ d[ES]/dt = k1·[E]·[S] – k-1·[ES] – k2·[ES] = 0

▪ So:

▪ KM is the Michaelis constant:                        .

▪ The equation obtained agrees with the experiments.
▪ [S] ≫ KM, at large [S] and therefore vmax = k2·[E]0,

▪ So:
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b) rapid pre-equilibrium:

▪

▪ Sol:

▪ K1 is the kinetic constant:                        .

▪ The equation derived agrees with the observations.
▪ For large [S], [S] ≫ K1, and vmax = k2·[E]0,

▪ In addition:                            .
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 A common evaluation method:
▪ Experimental rate equation  ⎯ Lineweaver–Burk plot
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 Summary: both approximations are OK, but the 
„compositions” of the K1 and KM constants differ.

 Studies of the slow S → P enzymatic reaction must 
be complemented by kinetic studies on the „pre 
steady state”  phase of the E+S⇌ ES equilibrium (in 
order to resolve k1 and k-1)  – usually a fast technique 
is needed (stopped flow, T-jump etc.)

 The [P]–t kinetic traces of the S → P are also useful.
 Enzymatic reactions can show diverse 

stoichiometric and kinetic properties – see 
biochemistry. 
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 It is quite instructive t compare the formation of HBr and 
other HX. The same stoichiometry, but …

▪ HBr formation:

▪ measurements: Bodenstein, Lind (1907)

▪ explanation: Christiansen, Herzfeld, Polányi (1919)

▪ a classic example used in reaction kinetics

▪ Stoichiometry: H2 + Br2⇌ 2 HBr

▪ Kinetics:

▪ A suitable mechanism was necessary. 
Finding it took a decade! 21
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HBr
 Mechanism: five (irreversible) elementary steps.

Br2 → 2 Br· va = ka[Br2]

Br· + H2 → HBr + H· vb = kb[Br·][H2]

H· + Br2 → HBr + Br· vc = kc[H·][Br2]

H· + HBr → Br· + H2 vd = kd[H·][HBr]

2 Br· + M→ Br2 + M ve = ke[Br·]2
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HBr

 Mechanism: five (irreversible) elementary steps.
Br2 → 2 Br· va = ka[Br2]

Br· + H2 → HBr + H· vb = kb[Br·][H2]

H· + Br2 → HBr + Br· vc = kc[H·][Br2]

H· + HBr → Br· + H2 vd = kd[H·][HBr]

2 Br· + M→ Br2 + M ve = ke[Br·]2

 Notice: Br2⇌ 2 Br· reversible
Br· + H2⇌HBr + H· reversible
H· + Br2 → HBr + Br· irreversible

 A typical chain reaction: a reaction of a reactive 
intermediate produces another reactive intermediate 
and these form a chain (cycle).

23

HBr

 Visualization of the mechanism for 
the chain reaction:

 Chain length =                                
number of products / chain initiation 24

HBr
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 Types of step in chain reactions:
▪ initiation: generation of a chain carrier (radical)
▪ propagation: 1 radical → product + 1 radical
▪ branching:  1 radical → several radicals
▪ retardation: product + radical → „anything” + radical
▪ termination: radical recombination or inhibition (e.g. 

on the wall, reaction with M)

 Reactive intermediate (often a radical, R·):
▪ unpaired electron (paramagnetic)
▪ very reactive: reacts rapidly (some are stable!)
▪ its concentration is very low and d[R]/dt ~ 0
▪ detectable by ESR or using a radical scavenger 25

HBr

d[HBr]/dt = kb[Br·][H2] + kc[H·][Br2] – kd[H·][HBr] (HBr formation)
d[H·]/dt = kb[Br·][H2] – kc[H·][Br2] – kd[H·][HBr] = 0      (steady state)
d[Br·]/dt = 2ka[Br2] – kb[Br·][H2] + kc[H·][Br2] + kd[H·][HBr] – 2ke[Br]2

= 0    (steady state)

 Kinetics of HBr
formation:

 Comparison with experiments: agreement 26
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Br2 → 2 Br· va = ka[Br2]

Br· + H2 →HBr + H· vb = kb[Br·][H2]

H· + Br2 →HBr + Br· vc = kc[H·][Br2]

H· + HBr→ Br· + H2 vd = kd[H·][HBr]

2 Br· + M→ Br2 + M ve = ke[Br·]2

 Kinetics of HBr                                                                      
formation:

 Results from numerical integration:

27

HBr
Br2 → 2 Br· va = ka[Br2]

Br· + H2 →HBr + H· vb = kb[Br·][H2]

H· + Br2 → HBr + Br· vc = kc[H·][Br2]

H· + HBr → Br· + H2 vd = kd[H·][HBr]

2 Br· + M→ Br2 + M ve = ke[Br·]2

[HBr]   10-5 M

[Br2] ~ 10-5

[H2] ~ 10-5

[Br] ~ 10-10

[H] ~ 10-16
t

[ci]

 Stoichiometry: H2 + I2⇌ 2 HI 
 Kinetics: v = k2[H2][I2] – k-2[HI]2

 Mechanism:

A. if H2 + I2⇌ 2HI is an elementary reaction,       
kinetic mass action gives: v = k2[H2][I2] – k-2[HI]2

▪ this agrees with the experimental rate equation.

▪ Note: the H2 + I2 → 2 HI reaction played an 
important role in setting up the collision theory. 
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HI

 Stoichiometry: H2 + I2⇌ 2 HI 
 Kinetics: v = k2[H2][I2] – k-2[HI]2

 Mechanism:

B. chain reaction possible. Steps of the mechanism:
I2⇌ 2 I· 
I· + H2⇌ HI + H· 
H· + I2⇌ HI + I· 

▪ After simplifications: v = kexp[H2][I2]  

 Both mechanism play a role – in a ratio that depends on T
(because of the effect of temperature on the dissociation of I2).29
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 Explosion: a rapid exothermic reaction that 
causes large pressure increase (pressure wave + 
detonation).

 Two types:
▪ Thermal explosion: increase in T, therefore in k and v
▪ Chain explosion: branching in a chain reaction

 Flame: a „standing wave” of explosion (reaction 
propagation = reactant input)

 Kinetics in a particular system: 
2 H2(g) + O2(g) → 2 H2O(g) 

30
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2 H2(g) + O2(g) → 2 H2O(g) 
 There are pressure ranges where the rate of the 

reaction is well-measureable and – depending on 
T – there are explosion limits:

▪ lower (1st), 

▪ upper (2nd) and

▪ thermal (3rd) explosion limits.

 The three explosion limits are in the 700-900 ºC 
range. They can be measured and plotted on a 
graph.

31

 Summary of the
explosion limits:

32

▪ lower (1st), 

▪ upper (2nd) and

▪ thermal (3rd) 
explosion limit.

 Properties of catalytic phenomena:
▪ a catalyst accelerates a reaction by reacting and then 

re-producing (no apparent consumption),

▪ a catalyst is often written on both sides of the 
stoichiometric equation, but its order of reaction is 
positive,

▪ a catalyst opens a new path for the reaction: the rate of 
this catalyzed process is typically larger then the rate of 
the reaction without the catalyst,

▪ a catalyst never influences the position of the 
equilibrium (thermodynamic neutrality), it accelerates 
both the forward and reverse reactions. 33 34

 Stoichiometric scheme:  A + {B} + K → P + Q + K
 Kinetics: 
v0 = k0[A]0 + kk[A]0[K]0

 There are much more complicated cases. (From the 
chemical point of view, we will talk about it later.) 35

 Autocatalysis:
 Stoichiometry: A  → P
 Kinetics: v = k0[A] + kak[A][P] 

 Typical autocatalytic trace: 

▪ S-shaped

▪ induction period

▪ point of inflection: vmax

 E.g.: MnO4
- + oxalate (Mn2+ catalysis)

▪ https://www.youtube.com/watch?v=iJiy38sExPE

 Soai reaction (chiral autocatalysis)
36
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 Autocatalysis and chemical oscillation.
 Lotka–Volterra-mechanism:

|A| + X → 2 X d[X]/dt = ka[A][X]

X + Y → 2 Y d[Y]/dt = kb[X][Y]

Y → B d[Y]/dt = -kc[Y]

 Solution: numerical integration.
 Only the concentrations of X and Y oscillate (not A 

and B!)
 The Lotka–Volterra model predicts a steady state

but non-equilibrium system. This is not d[X]/dt = 0 

type steady state!
38

39https://www.youtube.com/watch?v=WasYuiOk5xQ

 Lotka–Volterra-mechanism:
|A| + X → 2 X

X + Y → 2 Y
Y → B
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