REACTION KINETICS AND REACTION MECHANISMS

Different levels of dealing with reaction rates:
I. REACTION KINETICS
macroscopic level - mathematical description
II. REACTION MECHANISMS
molecular level-interpretation
III. THEORIES OF REACTION RATES

Arrhenius equation, collision and activated complex theories

Concept and properties of elementary reactions:

Elementary reaction: consumption of a few reactant molecules, the dissociation and formation of maximum
1-2 bonds through a single activated complex.
Elementary reactions are reversible!
types of elementary reactions and their rate equations:

- unimolecular

A \rightarrow product(s)

- bimolecular (most common)
$\mathrm{A}+\mathrm{B} \rightarrow$ product(s) or $2 \mathrm{~A} \rightarrow$ product(s)
- termolecular (rare)
$A+B+C$ or $A+2 B$ or $3 A \rightarrow \operatorname{product}(s)$.
Order of reaction and molecularity are the same!

Unimolecular processes:

- There is a single reactant, this is transformed into product(s) through decay, isomerization, inversion (cyclopropane \rightarrow propene, $\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{O}_{2} \ldots$)
- Stoichiometry: $\quad A \rightarrow P$
- Rate equation: $\mathrm{d}[\mathrm{P}] / \mathrm{d} t=k_{\text {exp }}[\mathrm{A}]$
- $k_{\text {exp }}$: experimental rate constant
- Mechanism: bimolecular collisions are often assumed (but not a priori necessary). How can bimolecular collisions lead to first order?

II. REACTION MECHANISMS

```
- kinetics - mechanisms:
- observed fact- postulate
- unique - often multiple possibilities
" „trade" - „art"
" Mechanism and its role: elementary reaction
that interpret
    a) the net stoichiometry of the process (observed
    intermediates if there are any) and
    b) kinetic observations (the rate equation).
- rate equation }\leftrightarrow\mathrm{ mechanism
```


Law of kinetic mass action:

- For elementary reactions, the rate equation can be deduced from the stoichiometry. For example:

$$
\begin{array}{ll}
=\mathrm{A} \rightarrow \operatorname{product}(\mathrm{~s}) & -\mathrm{d}[\mathrm{~A}] / \mathrm{d} t=k_{1}[\mathrm{~A}] \\
=\mathrm{A} \rightleftharpoons \mathrm{~B} & -\mathrm{d}[\mathrm{~A}] / \mathrm{d} t=k_{1}[\mathrm{~A}]-k_{-1}[\mathrm{~B}] \\
=\mathrm{A}+\mathrm{B} \rightarrow \operatorname{product}(\mathrm{~s}) & -\mathrm{d}[\mathrm{~A}] / \mathrm{d} t=k_{2}[\mathrm{~A}][\mathrm{B}] \\
=2 \mathrm{~A} \rightarrow \operatorname{product}(\mathrm{~s}) & -\mathrm{d}[\mathrm{~A}] / \mathrm{d} t=k_{2}[\mathrm{~A}]^{2} \\
=\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow \operatorname{product}(\mathrm{~s}) & -\mathrm{d}[\mathrm{~A}] / \mathrm{d} t=k_{3}[\mathrm{~A}][\mathrm{B}][\mathrm{C}] \\
=\mathrm{A}+2 \mathrm{~B} \rightarrow \text { product(s) } & -\mathrm{d}[\mathrm{~A}] / \mathrm{d} t=k_{3}[\mathrm{~A}][\mathrm{B}]^{2}
\end{array}
$$

- An elementary reaction is always reversible, but the rate of the reverse reaction is often negligible.

Unimolecular processes:

- Lindemann-Hinshelwood mechanism:
- $A+A \rightleftharpoons A^{*}+A$ k_{1} and k_{-1}
- $A^{*} \rightarrow P$ k_{2}
- The steady state approximation is used: $[A *]$ is low and constant, therefore $\mathrm{d}\left[\mathrm{A}^{*}\right] / \mathrm{d} t=0$.
- The previous two points together: $k_{1}[\mathrm{~A}]^{2}-k_{-1}\left[\mathrm{~A}^{*}\right][\mathrm{A}]-k_{2}\left[\mathrm{~A}^{*}\right]=0$
- A differential equation is turned into an algebraic equation!
- $\left[\mathrm{A}^{*}\right]$ can be derived from this and substituted

Termolecular (third order?)

reactions:

- Other, equivalent mechanisms can also be postulated to interpret the same rate equation:
c) $\mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons \mathrm{NO} \cdot \mathrm{O}_{2} \quad \mathrm{~K}^{\prime}=\left[\mathrm{NO} \cdot \mathrm{O}_{2}\right] /[\mathrm{NO}]\left[\mathrm{O}_{2}\right]$ $\mathrm{NO} \cdot \mathrm{O}_{2}+\mathrm{NO} \rightarrow 2 \mathrm{NO}_{2}$
- After a derivation similar to the previous one: $1 / 2 \mathrm{~d}\left[\mathrm{NO}_{2}\right] / \mathrm{d} t=k_{2}\left[\mathrm{NO} \cdot \mathrm{O}_{2}\right][\mathrm{NO}]$.
- $\left[\mathrm{NO} \cdot \mathrm{O}_{2}\right]$ can be given from the equilibria: $\mathrm{d}\left[\mathrm{NO}_{2}\right] / \mathrm{d} t=k_{2} K^{\prime}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$. This (also) agrees with the experimental rate equation.
- There is no way of distinguishing b) from c) kinetically.
- Detection of the intermediate $-\mathrm{N}_{2} \mathrm{O}_{2}$ or $\mathrm{NO} \cdot \mathrm{O}_{2}$ - may be decisive (e.g. spectrophotometrically).

Termolecular (third order?)
 reactions:

- Stoichiometry: $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g})$
- - Kinetics: $\quad \mathrm{d}\left[\mathrm{NO}_{2}\right] / \mathrm{d} t=k_{\text {exp }}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
- Mechanism:
a) Three-body collision. Feasible? If not:
b) Two bimolecular steps:
" a rapid pre-equilibrium: $2 \mathrm{NO} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}, K_{1}=\left[\mathrm{N}_{2} \mathrm{O}_{2}\right] /[\mathrm{NO}]^{2}$
- rate determining second step: $\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
- The rate of product formation: $1 / 2 \mathrm{~d}\left[\mathrm{NO}_{2}\right] / \mathrm{d} t=k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right]$. $\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]$ is obtained from the equilibrium and substituted into the previous equation: $\mathrm{d}\left[\mathrm{NO}_{2}\right] / \mathrm{d} t=2 k_{2} K_{1}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$.
- The product $k_{\text {exp }}=2 k_{2} K_{1}$ separated kinetically!
- K_{1} can only be measured in independent measurements.

Interpretation of higher reaction orders:

- Second (o third) order with respect to H^{+}is common, e.g. $v=k_{\text {exp }}[\mathrm{A}][\mathrm{B}]\left[\mathrm{H}^{+}\right]^{2} \quad \mathrm{~A}: \mathrm{BrO}_{3}{ }^{-}, \mathrm{B}: \mathrm{I}^{-}$
a) Four-body collisions are completely unfeasible.
b) A possible mechanism:
$\mathrm{A}+\mathrm{H}^{+} \rightleftharpoons \mathrm{AH}^{+} \quad$ rapid protonation pre-equilibrium
$\mathrm{AH}^{+}+\mathrm{H}^{+} \rightleftharpoons \mathrm{AH}_{2}^{2+} \quad$ another rapid pre-equilibrium
$\mathrm{B}+\mathrm{AH}_{2}{ }^{2+} \rightarrow$ product slow rate determining step
- $\left[\mathrm{AH}_{2}{ }^{2+}\right]$ can be expressed from the two pre-equilibria:
$v=k_{3} K_{1} K_{2}[\mathrm{~A}][\mathrm{B}]\left[\mathrm{H}^{+}\right]^{2}$
- The product $k_{\text {exp }}=k_{3} K_{1} K_{2}$ cannot be separated kinetically.

Zeroth order and its

rationalization:

- A reactant does not appear in the rate determining step.
- Rationalization: this reactant only enters the mechanism after the rate determining step in a relatively fast process.
= E.g. halogenation of acetone: $\mathrm{A}+\mathrm{X}_{2} \rightleftharpoons \mathrm{AX}+\mathrm{HX}$
- Kinetics: $\quad v=k[\mathrm{~A}]\left[\mathrm{H}^{+}\right]$
a) Mechanism:
- first step: acid catalyzed enolization; slow step: $\mathrm{CH}_{3} \mathrm{CO}-\mathrm{CH}_{3}+\mathrm{H}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COH}=\mathrm{CH}_{2}+\mathrm{H}^{+}$
- second step: halogenation of the enol form; fast step: $\mathrm{CH}_{3} \mathrm{COH}=\mathrm{CH}_{2}+\mathrm{X}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CO}-\mathrm{CH}_{2} \mathrm{X}+\mathrm{HX}$
- Message: kinetic data give very little information for processes after the rate determining step.

Kinetics of enzyme catalysis and the Michaelis-Menten equation:

- Enzymes: efficient, specific biocatalysts
- Stoichiometry: $S \xrightarrow{E} P$
- Kinetics: initial rates are measured (because...):

Kinetics of enzyme catalysis and the Michaelis-Menten equation:

- Description of v-[S] curves: $v=\frac{a}{\frac{b}{[S]}+1}$ or $v=\frac{a[\mathrm{~S}]}{b+[\mathrm{S}]}$
- Constants a and b have chemical meaning:
- a : as [S] increases, v saturates so that a further increase in [S] does not accelerate the product formation any more. In this case $[\mathrm{S}] \gg b$, i.e. $a=v_{\max }$.
- b : when $b=[\mathrm{S}], v=v_{\text {max }} / 2$ holds, so $[\mathrm{S}]_{1 / 2}=b$.
- Leonor Michaelis andMaud Leonora Menten (1912).

Kinetics of enzyme catalysis and the Michaelis-Menten equation:

a) steady state approximation:

- $\mathrm{d}[\mathrm{ES}] / \mathrm{d} t=k_{1} \cdot[\mathrm{E}] \cdot[\mathrm{S}]-k_{-1} \cdot[\mathrm{ES}]-k_{2} \cdot[\mathrm{ES}]=0$
- So: $\quad[\mathrm{ES}]=\frac{k_{1}[\mathrm{E}][\mathrm{S}]}{k_{-1}+k_{2}}=\frac{k_{1}\left([\mathrm{E}]_{0}-[\mathrm{ES}]\right)[\mathrm{S}]}{k_{-1}+k_{2}}$

$$
v=\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{d} t}=k_{2} \cdot[\mathrm{ES}]=\frac{k_{2} \cdot[\mathrm{~S}] \cdot[\mathrm{E}]_{0}}{K_{M}+[\mathrm{S}]}
$$

- K_{M} is the Michaelis constant: $K_{M}=\frac{k_{-1}+k_{2}}{k_{1}}$
- The equation obtained agrees with the experiments.
" $[\mathrm{S}]>K_{M,}$ at large $[\mathrm{S}]$ and therefore $v_{\text {max }}=k_{2} \cdot[\mathrm{E}]_{0,}$
- So: $\quad v=\frac{[\mathrm{S}] \cdot v_{\max }}{K_{M}+[\mathrm{S}]}$

Kinetics of enzyme catalysis and the Michaelis-Menten equation:

- Two more observations:
- Maximum in the T-dependence. Arrhenius equation and denaturing.

- The pH-dependence also often shows a maximum. Amphoteric amino acids!

Kinetics of enzyme catalysis and the Michaelis-Menten equation:

- The equation is interpreted by the Briggs-Haldane mechanism:

$\mathrm{E}+\mathrm{S} \rightleftharpoons \mathrm{ES} \quad k_{1}$ and k_{-1}

$\mathrm{ES} \rightarrow \mathrm{P}+\mathrm{E} \quad k_{2}$, rate determining step

- Product formation: $\mathrm{d}[\mathrm{P}] / \mathrm{d} t=k_{2}[\mathrm{ES}]$. What is [ES]?
- Both the rapid pre-equilibrium and steady-state approximations can be applied.
- Important: the overall enzyme concentration $[\mathrm{E}]_{0}$ is distributed between free enzyme [E] and enzymesubstrate $[\mathrm{ES}]$ forms, so $[\mathrm{E}]_{0}=[\mathrm{E}]+[\mathrm{ES}]$ should be considered as a mass balance equation.

Kinetics of enzyme catalysis and the Michaelis-Menten equation:

b) rapid pre-equilibrium:

- $K_{1}=\frac{[\mathrm{ES}]}{[\mathrm{E}][\mathrm{S}]}$
- Sol: $\quad[\mathrm{ES}]=\frac{k_{1}[\mathrm{E}]_{0}[\mathrm{~S}]}{k_{-1}+k_{1}[\mathrm{~S}]}$

$$
v=\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{d} t}=k_{2} \cdot[\mathrm{ES}]=\frac{k_{2} \cdot[\mathrm{~S}] \cdot[\mathrm{E}]_{0}}{K_{1}+[\mathrm{S}]}
$$

- K_{1} is the kinetic constant: $K_{1}=\frac{k_{-1}}{k_{1}}$
- The equation derived agrees with the observations.
- For large $[\mathrm{S}],[\mathrm{S}]>K_{1}$, and $v_{\max }=k_{2} \cdot[\mathrm{E}]_{0,}$
- In addition: $v=\frac{[\mathrm{S}] \cdot v_{\max }}{K_{1}+[\mathrm{S}]}$

Kinetics of enzyme catalysis and the Michaelis-Menten equation:

- A common evaluation method:
- Experimental rate equation - Lineweaver-Burk plot $v=\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{d} t}=\frac{k_{2}[\mathrm{~S}][\mathrm{E}]}{K_{M}+[\mathrm{S}]}$

$$
\frac{1}{v}=\frac{1}{k_{2}[\mathrm{E}]}+\frac{K_{M}}{k_{2}[\mathrm{E}][\mathrm{S}]}
$$

modern

Kinetics of enzyme catalysis and the Michaelis-Menten equation:

- Summary: both approximations are OK, but the "compositions" of the K_{1} and K_{M} constants differ.
- Studies of the slow $S \rightarrow \mathrm{P}$ enzymatic reaction must be complemented by kinetic studies on the „pre steady state" phase of the $\mathrm{E}+\mathrm{S} \rightleftharpoons \mathrm{ES}$ equilibrium (in order to resolve k_{1} and k_{-1}) - usually a fast technique is needed (stopped flow, T-jump etc.)
- The $[\mathrm{P}]-t$ kinetic traces of the $\mathrm{S} \rightarrow \mathrm{P}$ are also useful.
- Enzymatic reactions can show diverse stoichiometric and kinetic properties - see biochemistry.

Gas phase formation of hydrogen halides:

- It is quite instructive t compare the formation of HBr and other $H \mathrm{X}$. The same stoichiometry, but ...
- Br formation:
" measurements: Bodenstein, Lind (1907)
" explanation: Christiansen, Herzfeld, Polányi (1919)
- a classic example used in reaction kinetics
- Stoichiometry: $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightleftharpoons 2 \mathrm{HBr}$
- Kinetics: $v=\frac{k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{3 / 2}}{\left[\mathrm{Br}_{2}\right]+k^{\prime}[\mathrm{HBr}]}=\frac{k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}}{1+\frac{k^{\prime}[\mathrm{HBr}]}{\left[\mathrm{Br}_{2}\right]}}$
- A suitable mechanism was necessary. Finding it took a decade!

Gas phase formation of hydrogen halides:
 HBr

- Mechanism: five (irreversible) elementary steps.

$$
\begin{array}{ll}
\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br} \cdot & v_{a}=k_{a}\left[\mathrm{Br}_{2}\right] \\
\mathrm{Br} \cdot+\mathrm{H}_{2} \rightarrow \mathrm{HBr}+\mathrm{H} . & v_{b}=k_{b}[\mathrm{Br} \cdot]\left[\mathrm{H}_{2}\right] \\
\mathrm{H} \cdot+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}+\mathrm{Br} . & v_{c}=k_{c}[\mathrm{H} \cdot]\left[\mathrm{Br}_{2}\right] \\
\mathrm{H} \cdot+\mathrm{HBr} \rightarrow \mathrm{Br} \cdot+\mathrm{H}_{2} & v_{d}=k_{d}[\mathrm{H} \cdot][\mathrm{HBr}] \\
2 \mathrm{Br} \cdot+\mathrm{M} \rightarrow \mathrm{Br}_{2}+\mathrm{M} & v_{e}=k_{e}[\mathrm{Br} \cdot]^{2}
\end{array}
$$

Gas phase formation of hydrogen halides: HBr

- Mechanism: five (irreversible) elementary steps.

$$
\begin{aligned}
& \mathrm{Br}_{2} \rightarrow 2 \mathrm{Br} \text {. } \\
& \mathrm{Br} \cdot+\mathrm{H}_{2} \rightarrow \mathrm{HBr}+\mathrm{H} . \\
& \mathrm{H} \cdot+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}+\mathrm{Br} \text {. } \\
& \left.\mathrm{H} \cdot+\mathrm{HBr} \rightarrow \mathrm{Br}+\mathrm{H}_{2} \quad{ }^{2}=k \cdot\right][\mathrm{HBr}] \\
& 2 \mathrm{Br} \cdot+\mathrm{M} \rightarrow \mathrm{Br}_{2}+\mathrm{M} \\
& v_{e}=k_{e}[\mathrm{Br} \cdot]^{2} \\
& \text { - Notice: } \quad \mathrm{Br}_{2} \rightleftharpoons 2 \mathrm{Br} \text {. reversible } \\
& \mathrm{Br} \cdot+\mathrm{H}_{2} \rightleftharpoons \mathrm{HBr}+\mathrm{H} . \quad \text { reversible } \\
& \mathrm{H} \cdot+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}+\mathrm{Br} \text {. irreversible }
\end{aligned}
$$

- A typical chain reaction: a reaction of a reactive intermediate produces another reactive intermediate and these form a chain (cycle).

Gas phase formation of hydrogen halides:

- Visualization of the mechanism for the chain reaction:
- Chain length = number of products / chain initiation 24

Gas phase formation of hydrogen halides:
 HBr

- Types of step in chain reactions:
- initiation: generation of a chain carrier (radical)
- propagation: 1 radical \rightarrow product +1 radical
- branching: 1 radical \rightarrow several radicals
" retardation: product + radical \rightarrow, anything" + radical
- termination: radical recombination or inhibition (e.g. on the wall, reaction with M)
- Reactive intermediate (often a radical, R•):
- unpaired electron (paramagnetic)
" very reactive: reacts rapidly (some are stable!)
- its concentration is very low and $d[R] / d t \sim 0$
- detectable by ESR or using a radical scavenger 25

Gas phase formation of hydrogen halides:
 HBr

- Kinetics of HBr formation:
$\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br}$. $\mathrm{Br}+\mathrm{H}_{2} \rightarrow \mathrm{HBr}+\mathrm{H}$. $\mathrm{H}+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}+\mathrm{Br}$. $\mathrm{H}+\mathrm{HBr} \rightarrow \mathrm{Br}+\mathrm{H}_{2}$ $2 \mathrm{Br} \cdot+\mathrm{M} \rightarrow \mathrm{Br}_{2}+\mathrm{M}$
$\mathrm{d}[\mathrm{HBr}] / \mathrm{d} t=k_{b}[\mathrm{Br} \cdot]\left[\mathrm{H}_{2}\right]+k_{c}\left[\mathrm{H}^{\cdot}\right]\left[\mathrm{Br}_{2}\right]-k_{d}\left[\mathrm{H}^{\cdot}\right][\mathrm{HBr}] \quad$ (HBr formation) $\mathrm{d}[\mathrm{H} \cdot] / \mathrm{d} t=k_{b}[\mathrm{Br} \cdot]\left[\mathrm{H}_{2}\right]-k_{c}[\mathrm{H} \cdot]\left[\mathrm{Br}_{2}\right]-k_{d}[\mathrm{H} \cdot][\mathrm{HBr}]=0 \quad$ (steady state) $\mathrm{d}[\mathrm{Br} \cdot] / \mathrm{d} t=2 k_{a}\left[\mathrm{Br}_{2}\right]-k_{b}[\mathrm{Br} \cdot]\left[\mathrm{H}_{2}\right]+k_{c}[\mathrm{H} \cdot]\left[\mathrm{Br}_{2}\right]+k_{d}[\mathrm{H} \cdot][\mathrm{HBr}]-2 k_{e}[\mathrm{Br}]^{2}$ $=0$
$[\mathrm{Br} \cdot]=\left(\frac{k_{a}\left[\mathrm{Br}_{2}\right]}{k_{e}}\right)^{1 / 2} \quad[\mathrm{H} \cdot]=\frac{k_{b}\left(k_{a} / k_{e}\right)^{1 / 2}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}}{k_{c}\left[\mathrm{Br}_{2}\right]+k_{d}[\mathrm{HBr}]}$
$\frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{d} t}=\frac{2 k_{b}\left(k_{a} / k_{e}\right)^{1 / 2}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{3 / 2}}{\left[\mathrm{Br}_{2}\right]+\left(k_{d} / k_{c}\right)[\mathrm{HBr}]}$
Comparison with experiments: agreement

Gas phase formation of hydrogen halides:

HBr

- Kinetics of HBr formation: $\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br}$. $\mathrm{Br} \cdot+\mathrm{H}_{2} \rightarrow \mathrm{HBr}+\mathrm{H}$. $\mathrm{H} \cdot+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}+\mathrm{Br}$. $\mathrm{H} \cdot+\mathrm{HBr} \rightarrow \mathrm{Br} \cdot+\mathrm{H}_{2}$ $2 \mathrm{Br} \cdot+\mathrm{M} \rightarrow \mathrm{Br}_{2}+\mathrm{M}$
$v_{a}=k_{a}\left[\mathrm{Br}_{2}\right]$ $v_{b}=k_{b}[\mathrm{Br} \cdot]\left[\mathrm{H}_{2}\right]$ $v_{c}=k_{c}[\mathrm{H} \cdot]\left[\mathrm{Br}_{2}\right]$ $v_{d}=k_{d}[\mathrm{H} \cdot][\mathrm{HBr}]$ $v_{e}=k_{e}[\mathrm{Br} \cdot]^{2}$
- Results from numerical integration:

Gas phase formation of

 hydrogen halides:- Stoichiometry: $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
- Kinetics: $\quad v=k_{2}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]-k_{-2}[\mathrm{HI}]^{2}$
- Mechanism:
B. chain reaction possible. Steps of the mechanism:

$$
\begin{aligned}
& \mathrm{I}_{2} \rightleftharpoons 2 \mathrm{I} \cdot \\
& \mathrm{I}+\mathrm{H}_{2} \rightleftharpoons \mathrm{HI}+\mathrm{H} \cdot \quad \frac{\mathrm{~d}[\mathrm{I} \cdot]}{\mathrm{d} t}=\ldots=0, \quad \frac{\mathrm{~d}[\mathrm{H} \cdot]}{\mathrm{d} t}=\ldots=0 \\
& \mathrm{H} \cdot+\mathrm{I}_{2} \rightleftharpoons \mathrm{HI}+\mathrm{I} \cdot \\
& \quad \frac{\mathrm{~d}[\mathrm{HI}]}{\mathrm{d} t}=k_{2+\left[\mathrm{I} \cdot \mathrm{I} \cdot\left[\mathrm{H}_{2}\right]-k_{2}[\mathrm{H}][\mathrm{I}]+k_{3+[}[\mathrm{H} \cdot]\left[\mathrm{I}_{2}\right]-k_{3-}[\mathrm{H}][[\mathrm{I} \cdot]\right.} \\
& \text { After simplifications: } v=k_{\text {exp }}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]
\end{aligned}
$$

- Both mechanism play a role - in a ratio that depends on T (because of the effect of temperature on the dissociation of I_{2}).9.

Branching chain reactions:

explosions

- Explosion: a rapid exothermic reaction that causes large pressure increase (pressure wave + detonation).
- Two types:
- Thermal explosion: increase in T, therefore in k and v
- Chain explosion: branching in a chain reaction
- Flame: a „standing wave" of explosion (reaction propagation = reactant input)
- Kinetics in a particular system:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Branching chain reactions: explosions

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- There are pressure ranges where the rate of the reaction is well-measureable and - depending on T - there are explosion limits:
- lower ($\left.1^{\text {st }}\right)$,
- upper ($\left.2^{\text {nd }}\right)$ and
- thermal $\left(3^{\text {rd }}\right)$ explosion limits.
- The three explosion limits are in the 700-900 ${ }^{\circ} \mathrm{C}$ range. They can be measured and plotted on a graph.

Catalysis, autocatalysis and oscillation

- Properties of catalytic phenomena:
- a catalyst accelerates a reaction by reacting and then re-producing (no apparent consumption),
- a catalyst is often written on both sides of the stoichiometric equation, but its order of reaction is positive,
- a catalyst opens a new path for the reaction: the rate of this catalyzed process is typically larger then the rate of the reaction without the catalyst,
- a catalyst never influences the position of the equilibrium (thermodynamic neutrality), it accelerates both the forward and reverse reactions.

Catalysis, autocatalysis and oscillation

- Stoichiometric scheme: $A+\{B\}+K \rightarrow P+Q+K$
- Kinetics:
$v_{0}=k_{0}[\mathrm{~A}]_{0}+k_{k}[\mathrm{~A}]_{0}[\mathrm{~K}]_{0}$

- There are much more complicated cases. (From the chemical point of view, we will talk about it later.)

Branching chain reactions:

 explosions- Summary of the explosion limits:
- lower ($\left.1^{\text {st }}\right)$,
- upper ($\left.2^{\text {nd }}\right)$ and
- thermal ($3^{\text {rd }}$) explosion limit.

Catalysis, autocatalysis and oscillation

Catalysis, autocatalysis and oscillation

- Autocatalysis:
- Stoichiometry: $A \rightarrow P$
- Kinetics: $\quad v=k_{0}[\mathrm{~A}]+k_{a k}[\mathrm{~A}][\mathrm{P}]$
- Typical autocatalytic trace:
- S-shaped
- induction period
- point of inflection: $v_{\text {max }}$
- E.g.: $\mathrm{MnO}_{4}^{-}+$oxalate (Mn^{2+} catalysis)
- https://www.youtube.com/watch? v=iJiy38sExPE Soai reaction (chiral autocatalysis)

Catalysis, autocatalysis and oscillation

Catalysis, autocatalysis and oscillation

- Autocatalysis and chemical oscillation.
- Lotka-Volterra-mechanism:

$$
\begin{array}{cl}
|\mathrm{A}|+\mathrm{X} \rightarrow 2 \mathrm{X} & \mathrm{~d}[\mathrm{X}] / \mathrm{d} t=k_{a}[\mathrm{~A}][\mathrm{X}] \\
\mathrm{X}+\mathrm{Y} \rightarrow 2 \mathrm{Y} & \mathrm{~d}[\mathrm{Y}] / \mathrm{d} t=k_{b}[\mathrm{X}][\mathrm{Y}] \\
\mathrm{Y} \rightarrow \mathrm{~B} & \mathrm{~d}[\mathrm{Y}] / \mathrm{d} t=-k_{c}[\mathrm{Y}]
\end{array}
$$

- Solution: numerical integration.
- Only the concentrations of X and Y oscillate (not A and B!)
- The Lotka-Volterra model predicts a steady state but non-equilibrium system. This is not $\mathrm{d}[\mathrm{X}] / \mathrm{d} t=0$ type steadystate!

Catalysis, autocatalysis and oscillation

