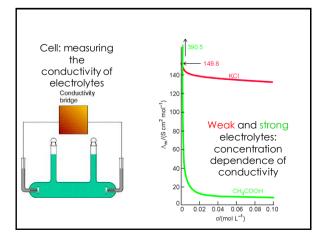
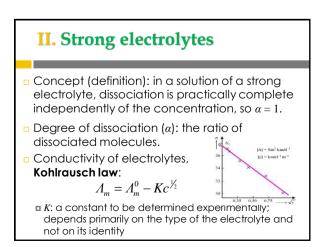
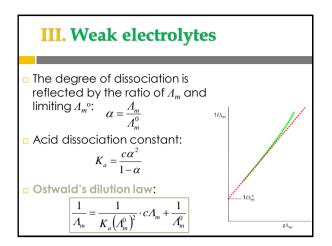


I. Conductivity of electrolytes

□ Ionic conductivity: Ohm's law is valid: $I = U / R_{el}$

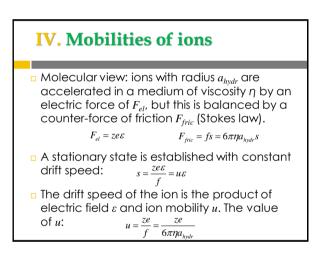

- Conductance G is the reciprocal of R_{el} :
- as T increases, so does G (opposite to metals). $G = 1/R_{el}$
- Solution: κ conductivity: $\kappa = Gl / A = GC$ (*l*: length of cell, *A*: surface, *C*: cell constant)
- Concentration is important, molar conductivity is used: $\Lambda_m = \kappa / c$
- The limiting value of Λ_m at infinite dilution is Λ_m° (limiting molar conductivity).

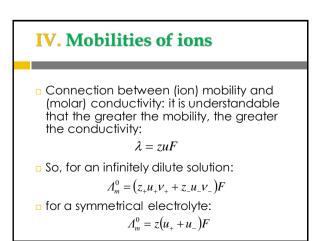

I. Conductivity of electrolytes

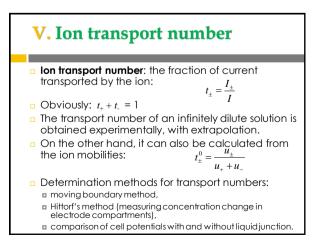

- The limiting value of Λ_m at infinite dilution is Λ_m° (limiting molar conductivity).
- The conductivity of the electrolyte is obtained by adding the conductivities of ions: **law of the independent migration of ions**: $\Lambda_m^0 = \nu_+ \lambda_+ + \nu_- \lambda_-$

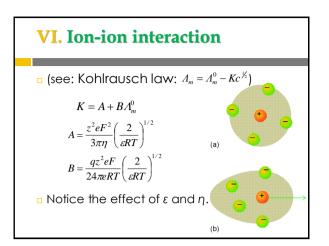
•
$$\lambda_{+}$$
 and λ_{-} : limiting molar conductivities of (individual) cations and anions

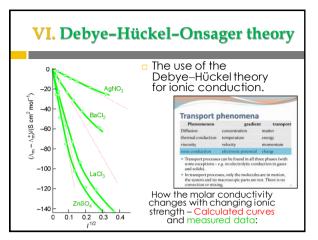
v₊ and v₋: stoichiometric number of the cation and anion




IV. Mobilities of ions


\Box drift speed(s)


- \square mobilities of ions (*u*)
- frictional coefficient(f)
- Connection between mobility (u) and conductivity (λ)
- \square transport numbers (t_+ and t_-)
- determination methods for transport numbers



IV. Mobilities of ions Molar conductivities of a few ions at 298 K				
H.	349.8	(au-	198.3	
Li*	38.7	OH-	55.4	
Na ⁺	50.1	CI ⁻	76.3	
K *	73.5	Br ⁻	78.1	
Be ⁺²	90.0	1-	76.8	$u = \frac{ze}{ze} = \frac{ze}{ze}$
Mg ²⁺	106.2	NO3	71.5	$u = \frac{ze}{f} = \frac{ze}{6\pi\eta a_{hydr}}$
Ca ²⁺	119.0	SQ42-	160.0	J Unit hydr
Ba2+	127.2	CH ₁ COO ⁻	40.9	
Al ³⁺	183.0	C ₆ H ₃ CO ⁻	32.4	
Cu2+	107.2	HCO ₃ ⁻	44.5	
Ag ⁺	61.9	CO32-	138.6	
Zn ²⁺	105.6	Fe(CN) ₆ ³⁻	302.7	
Ce ³⁺	209.4	Fe(CN)64-	442.0	

