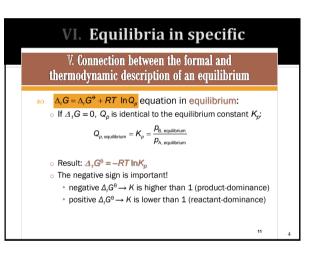
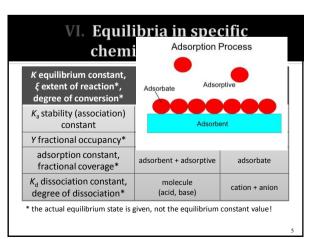
VI. Equilibria in specific chemical systems

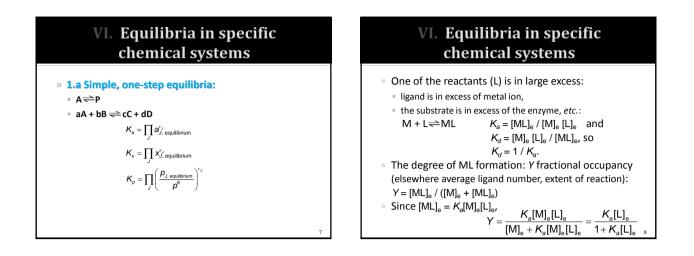
- One of the decisive objectives of thermodynamics is the exact description of chemical equilibria.
- Our general contexts apply to all types of equilibria.
- The issue of chemical equilibrium covers almost the entire chemistry, so, many different phenomena can and should be studied, described and utilized.
- Here are just some of the most important types, groups, and examples.

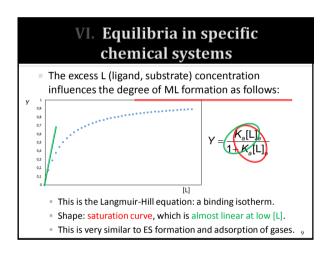

VI. Equilibria in specific chemical systems

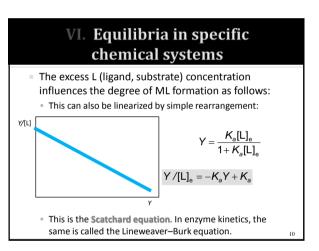

1. Forms of chemical equilibria:

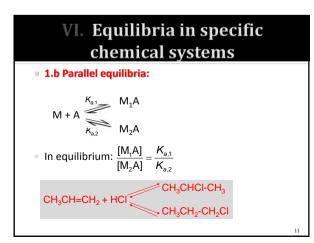
- a. simple, one-step equilibria,
- b. parallel equilibria,
- c. serial (stepwise, consecutive) equilibria,
- d. cyclic equilibria,
- equilibrium relations of connected (complex) reactions,
- f. macroscopic and microscopic equilibria,
- g. cooperative equilibria,
- h. ...

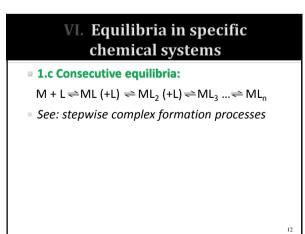
VI. Equilibria in specific chemical systems

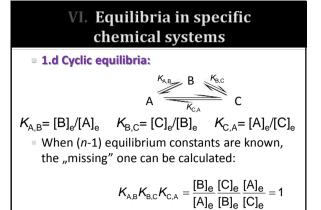

- 2. Types of equilibria:
 - A. Homogeneous (one-phase) equilibria:
 - acid-base equilibria
 - redox equilibria
 - equilibria for metal complexes
 - dissociation of gas molecules
 - equilibria in complex systems
 - the thermodynamics of ATP
 - B. Heterogeneous equilibria:
 - solubility (product)
 - thermal decomposition of solids
 - electrodes and galvanic cells (electrochemistry)
 - adsorption on solid surfaces (colloidics)

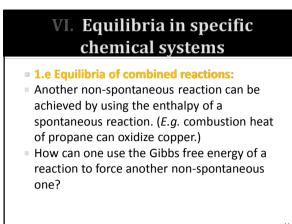





VI. Equilibria in specific chemical systems


⊿ _r G ^θ (kJ/mol)	к	equilibrium composition
-50	6×10 ⁸	the reaction is almost complete
-10	57	there is a lot of products
-5	7.5	more products than reactants
0	1	products = reactants
+5	0.13	more reactants than products
+10	0.02	there is a lot of reactants left
+50	1.7×10 ⁻⁹	almost no products at all





VI. Equilibria in specific chemical systems

- **1.e Equilibria of combined reactions:** A + B \rightleftharpoons C $\Delta_1 G^{\theta}$ = +20 kJ/mol K_1 = 0.003
 - There is hardly any product formation, reaction (1) does not take place.
- Find a suitable spontaneous reaction that removes C:
 - $C(+F) \rightleftharpoons E \qquad \Delta_2 G^{\theta} = -30 \text{ kJ/mol} \quad K_2 = 18100$
 - In this, C is almost completely transformed into E. The necessary formation of the "missing" C "pulls" the reaction (1), and it is practically complete.

VI. Equilibria in specific chemical systems

- Combining the two reactions:
 - A + B (+ F) \rightleftharpoons E $\Delta_{1,2}G^{\theta} = -10 \text{ kJ/mol} \quad K_{1,2} = 56.$
 - The condition of such coupling is the C in both.
 - This is basically the "Le Chatelier's principle": the system (reaction 1) tries to compensate the the external stress – the removal of C – by producing more and more C.
- Examples:
 - two inorganic (important industrial) systems;
 - a biological system (the thermodynamics of ATP);

Producing copper from copper(I) sulfide

- $Cu_2S \rightarrow 2Cu + S$ $\Delta_1G^{\theta} = +86 \text{ kJ/mol}$
- non-spontaneous process! Only traces of Cu and S.
 Remove sulfur continuously by oxidizing it:

$$S + O_2 \rightarrow SO_2$$
 $\Delta_2 G^{\theta} = -214 \text{ kJ/mol}$
spontaneous!

- Coupling of the two reactions (using S as a "common" reactant):
 - $Cu_2S + O_2 \rightarrow 2Cu + SO_2 \quad \Delta_{1,2}G^{\theta} = -128 \text{ kJ/mol.}$
 - This coupled reaction already happens spontaneously. The Gibbs free energy of the oxidation of sulfur provides the Gibbs free energy for copper formation (from copper sulfide).

Producing iron from iron(III) oxide

- $Fe_2O_3 \rightarrow 2Fe + 1,5 O_2$ $\Delta_1G^{\theta} = 742 \text{ kJ/mol}$
- non-spontaneous process!
- 1.5 C + 1.5 O₂ \rightarrow 1.5 CO₂ $\Delta_1 G^{\theta}$ = -1.5·394 kJ/mol ■ spontaneous!
- The two reactions coupled:
 - Fe_2O_3 + 1.5 C → 2Fe + 1.5 CO₂ $Δ_{1,2}G^{θ}$ = 150 kJ/mol • At room temperature, the reaction is still non
 - spontaneous,
 - but there is gas formation in the coupled reaction, $\Delta_{1,2}S$ is a large positive value. Since $\Delta G = \Delta H - T\Delta S$, at higher temperatures (in this case, at 826 K) $\Delta_{1,2}G$ changes its sign from + to -.

The thermodynamics of ATP

- Living systems are powered by energy in food. Part of this energy is used as it is produced, but some of them is stored for later use.
- A complicated mechanism works in which there are energy storing and energy utilizing steps.
- Important: energy stored in exergonic reactions my drive other, endergonic processes.
- It is practicable to use a biological standard state.

The thermodynamics of ATP

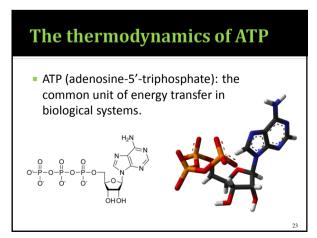
Biological standard state: pH = 7

- $a_{H+} = 1$ (pH = 0) would be too acidic.
- Designation: ⁰
- Example: $A + v H^+(aq) \rightarrow P$
 - $\Delta_{\rm r}G = \mu_{\rm P} \mu_{\rm A} v \mu_{\rm H+}$

 (The two standard Δ_rG values are only different if H⁺ participates in the process.)

The thermodynamics of ATP

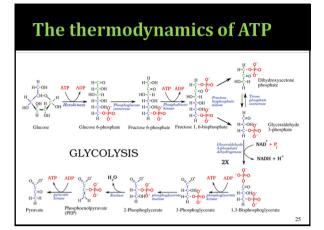
- Particular example (nicotine amide dinucleotide): NADH(aq) + H⁺(aq) → NAD⁺ (aq) + H₂(g)
 - $\Delta_r G^{\theta} = -21.8 \text{ kJ/mol}$ (exergonic for $a_{H+} = 1$)
 - But at pH = 7, Δ_iG⁰ = +19.7 kJ/mol endergonic, so free energy is needed to "feed" the reaction.
 - Endergonic reactions: do not proceed spontaneously (protein biosynthesis, muscle contractions, vision etc.)


21

The thermodynamics of ATP

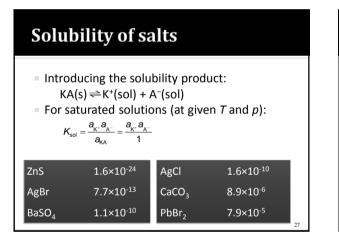
- Endergonic reactions: do not proceed spontaneously (protein biosynthesis, muscle contractions, vision etc.)
- Exergonic reactions: energy is stored in adenosine triphosphate (ATP) molecules. Its hydrolysis is exergonic and can drive other, endergonic reactions. [These are usually catalyzed by enzymes, but this is a kinetic phenomenon.]

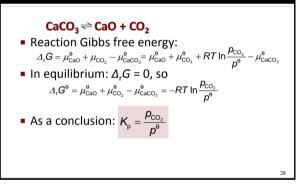
```
ATP + H_2O \rightarrow ADP + P_i^- + H^+
```

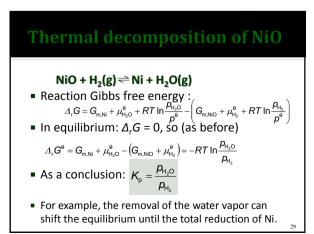

- $\Delta_r G^0 = -30 \text{ kJ/mol}$ $\Delta_r H^0 = -20 \text{ kJ/mol}$ $\Delta_r S^0 = +34 \text{ J/(molK)}$
- Where does the energy of ATP (hydrolizable phosphate ester bonds) come from? Its origin is the oxidation (burning) of food (carbohydrate, fat) in complicated, coupled processes. ²²

The thermodynamics of ATP

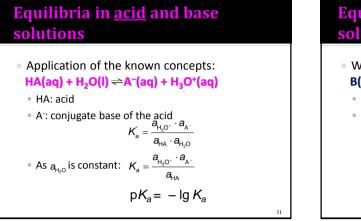
Anaerobic cell metabolism (in the absence of O_2).


- Insufficient O₂ (at birth; long-distance running): glucose + 2 P⁻_i + 2 ADP → 2 lactate⁻ + 2 ATP + 2 H₂O
- Source of energy: partial oxidation of glucose to lactate.
- Exergonic process: $\Delta_r G^0 = -218 \text{ kJ/mol}$.
- Two molecules of ADP converted to ATP : 2×(+30).
- $\Delta_r G^0 = -218 + 2 \times 30 = -158 \text{ kJ/mol is available.}$
- Food is both a source of direct energy and energy stored for later use by ADP \rightarrow ATP transformation.
- Poor efficiency. [Aerobic respiration is better, the burning of glucose in total oxidation yields –2880 kJ/mol.]


The thermodynamics of ATP


Aerobic cell metabolism (with oxygen).

- Energy source: the total oxidation of glucose to carbon dioxide and water: $\Delta_r G^0 = -2880 \text{ kJ/mol}$ (CO₂ is exhaled.)
- Schematically (as the mechanism is very complicated): $glucose + O_2 + 38 ADP \rightarrow CO_2 + H_2O + 38 ATP$
- For 38 ATP, 38×30 = 1140 kJ is needed. Available 1740 kJ
- To produce sucrose from glucose and fructose ($\Delta_r G^0 = 23$ kJ/mol), one molecule of ATP (-30 kJ) is sufficient.
- For protein synthesis, a lot of ATP is needed: a single peptide bond is Δ , $G^0 = 17$ kJ/mol endergonic, but its indirect biosynthesis needs 3 molecules of ATP. In myoglobin (relatively small protein) ~150 peptide bonds require 450 molecules of ATP, i.e. 12 molecules of glucose in aerobic oxidation. 26



Thermal decomposition of CaCO₃

Equilibria in acid and base solutions The most important type of equilibrium, it is everywhere! Aqueous solutions are the most common (laboratory, biological systems, nature, industry etc.) In essence: electrolytic dissociation. Acid-base theories and classifications : Arrhenius: produce H⁺ or OH⁻ in aqueous dissociation Brønsted-Lowry: proton donor acids: $HA \rightleftharpoons H^+ + A^ B + H^+ \rightleftharpoons BH^+$ proton acceptor bases: Lewis: electron pair acceptor or donor. There are always conjugate acid-base pairs.

Equilibria in acid and <u>base</u> solutions

Water also takes part in acid-base reactions! B(aq) + H₂O(I) ⇐ BH⁺(aq) + OH⁻(aq)

BH⁺: the conjugated acid

$$K_{b} = \frac{a_{BH^{+}} \cdot a_{OH}}{a_{D}}$$

$$\mathsf{p}K_b = - \mathsf{lg} K_b$$

Equilibria in acid and base solutions Classification of acids and bases: strong and weak acids/bases (superacids) Determined by the degree of Gibbs energy, G dissociation – dependent on c. Continuous transition: from very strong mineral acids to very weak organic acids, the same for bases. Superacids (Nobel prize for George Olah). H₂O A⁻ + H_aO \boldsymbol{K} is in strong connection with the reaction Gibbs free energy. ¥ Extent of reaction

Equilibria in acid and base solutions

Classification of acids and bases:

strong and weak acids/bases (superacids)

Acid	conjugate base	K _a	рК _{а(1)}	р <i>К</i> _{а(2,3)}	
HI	T.	1011	-11		
HCI	Cl	10 ⁷	-7		
H ₂ SO ₄	HSO4 ⁻	10 ²	-2		
HSO ₄ -	SO42-	1.2×10 ⁻²		1.92	
acetic acid	Ac⁻		4.75		
carbonic acid	HCO ₃ ⁻ , CO ₃ ²⁻		6.37	10.25	
phosphoric a	cid		2.12	7.21	12.67
NH_4^+	NH ₃		9.25		
					34

Equilibria in acid and base solutions

Classification of acids and bases:

- strong and weak acids/bases (superacids)
- mono-, by-, triprotic acids/bases
- diluted and concentrated acids (<u>Hammett function</u>) pH scale

measurement of pH calculation of pH

Equilibria in acid and base solutions

Acid/base titrations

Henderson–Hasselbach equation: pH = pK_a – lg([HA]/[A])

 $pH = pK_w + \log B^*$

 $\rho H = -\frac{1}{2} \rho K_{a} + -\frac{1}{2} \rho K_{w} + \frac{1}{2} \log S$

 $= \frac{1}{2}pK_a - \frac{1}{2}\log A_0$

Half-way to the stoichiometric

- Versions :
 - strong acid + strong basestrong acid + weak base
- weak acid + strong base
- (weak acid + weak base)
- polyprotic acid + strong base
- End point detection:
 - hydrogen electrode
 - indicator (colored organic compound with suitable pK_a).

Redox equilibria and titrations

- They are formally similar to acid-base equilibria but here there is electron transfer instead of proton transfer.
- In general:

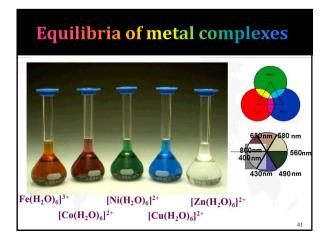
 $K = \frac{a_{A_{ox}} \cdot a_{B_{red}}}{a_{A_{red}} \cdot a_{B_{ox}}}$ $A_{red} + B_{ox} \Rightarrow A_{ox} + B_{red}$

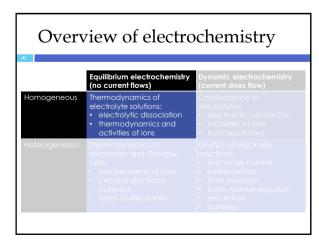
- Their description is discussed in electrochemistry using standard redox potentials.
- The endpoints of the redox titrations may be indicated by an electrode or by a colored redox indicator (with appropriate E^{θ}).

Equilibria of metal complexes

Metal complexes: central metal ion + ligands (solv)

- composition, stoichiometry: (1:1 1:8)
- mono- and bimetallic complexes, agua complexes,
- mixed ligand complexes
- equilibrium description:
- stepwise complex formation equilibria
- structure, bindings:
 - the crystal field and ligand field theory was introduced to explain the color and the magnetic properties of the complexes.
- kinetic properties:
- ligand substitution (labile/inert);
- complex catalysts
- practical importance (industry, agriculture, living organisms ...)

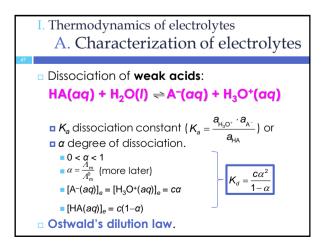

Equilibria of metal complexes

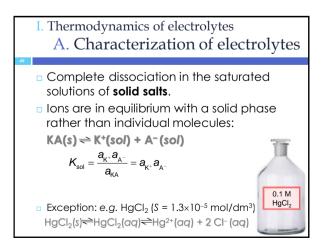

- Net reaction (charges: Me^{m+}, L⁻ and/or ⁰) $Me(H_2O)_6(aq) + 6 L(aq) \rightleftharpoons MeL_6(aq) + 6 H_2O$
- Thermodynamic equilibrium constant: $K = \frac{a_{MeL_6}}{a_{MeL_6}}$
- $\overline{\boldsymbol{a}_{\mathrm{Me(H_2O)_6}}\cdot\boldsymbol{a}_{\mathrm{L}}^{\mathrm{6}}}$ The activity of water can be incorporated into K.
- The equilibria can be described separately for the stepwise coordination of each ligand: $\mathsf{Cd}^{2+} \stackrel{{}^{\!\!\!\!\!}}{\rightleftharpoons} [\mathsf{Cdl}]^+ \stackrel{{}^{\!\!\!\!\!\!\!}}{\rightleftharpoons} \mathsf{Cdl}_2 \stackrel{{}^{\!\!\!\!\!\!\!}}{\rightleftharpoons} [\mathsf{Cdl}_3]^- \stackrel{{}^{\!\!\!\!\!\!\!\!\!\!\!\!}}{\rightleftharpoons} [\mathsf{Cdl}_4]^{2-}$
- To describe these processes, stepwise equilibrium constants or net stability products should be given.

Equilibria of metal complexes

Some colorful examples:

- [Fe(SCN),]^{(3-x)+} blood red (in acidic medium)
- [Fe(phen)₃]²⁺ red
- [Fe(phen)₃]³⁺ blue
- $[Fe(mioglobin)_4]^{2+}$ deep red (hemoglobine)
- $[Cu(H_2O)_4]^{2+}$ light blue
- $[Cu(NH_3)_4]^{2+}$ deep blue
- [Cu(en)₂]²⁺ green
- [Cu(Br)₄]²⁻ violet
- $[Cr(H_2O)_6]^{3+}$ violet
- $[Co(H_2O)_6]^{2+} pink$
- [Co(NH₂)₅(ONO)]²⁺ red

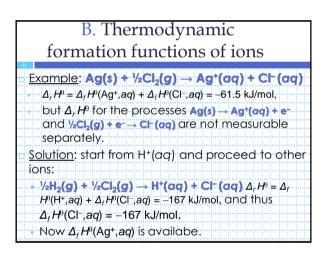

HOMOGENEOUS EQUILIBRIUM ELECTROCHEMISTRY: THERMODYNAMICS OF ELECTROLYTES


- . Thermodynamics of electrolytes.
 - A. Characterization of electrolytes
 - B. Thermodynamic formation functions of ions
 - c. Activities of ions in solution, the Debye-Hückel theory

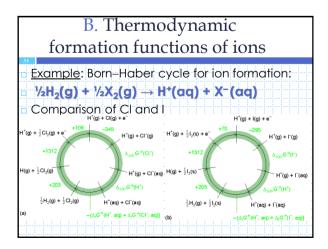
I. Thermodynamics of electrolytes A. Characterization of electrolytes

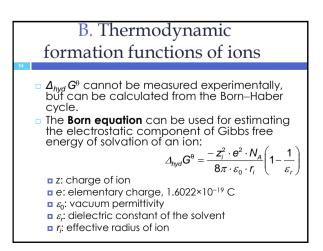
- Electrolytes are special types of solutions: homogeneous, multicomponent systems
 Ionic compounds dissociate into anion(s) and cation(s) in polar solvents (Svante Arrhenius, Nobel prize in 1903)
- Mostly the same general properties as for other (dilute) solutions:
 - colligative properties (freezing point depression, boiling point elevation, osmosis, distribution...)
 may both be ideal and real
- Unique property:
- conduction of electricity

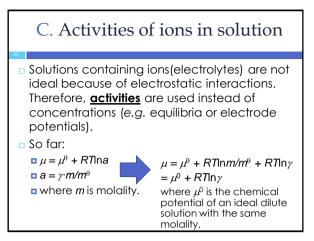
I. Thermodynamics of electrolytes I. Thermodynamics of electrolytes A. Characterization of electrolytes A. Characterization of electrolytes Acids, bases, salts are electrolytes: Electroneutrality – there are no solutions Salts: practically complete dissociation containing cation only, or anion only! Acids and bases: weak or strong The electric conduction is an ion Dissociation is an equilibrium: conduction where κ increases with K_d dissociation constant or increasing temperature (versus metals). • a degree of dissociation Molten electrolytes (e.g. NaCl(I)) also conduct electricity. Electrolytic dissociation: $K_a = \frac{a_{\mathrm{H_3O^+}} \cdot a_{\mathrm{A^-}}}{a_{\mathrm{HA}}}$ $HA(aq) + H_2O(l) \rightleftharpoons A^{-}(aq) + H_3O^{+}(aq)$ (acid-base equilibria, pH, buffers, indicators, pH-titration, pK_a complexation)



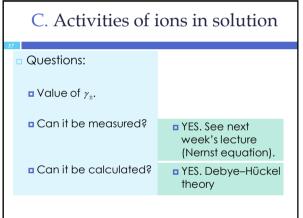
B. Thermodynamic formation functions of ions

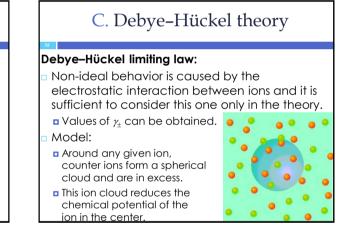

- Thermodynamic formalism:
 - behavior is close to ideal until ca. 10⁻³ mol/dm³,
 above: real solutions.
 - Activity (a) is used instead of concentration (c or m).

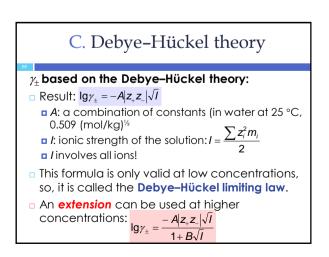

B. Thermodynamic formation functions of ions

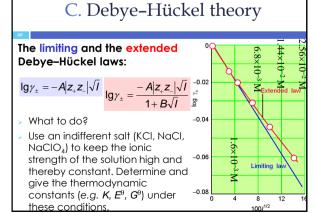

- Problem: solutions never contain one type of ion (e.g. cation) only, there is always at least one other oppositely charged ion.
- Arbitrary conventions (but widely agreed on): • $\Delta_f H^0(H^+, aq) = 0$ J/mol and
 - $\Delta_f G^{\theta}(H^+, aq) = 0 \text{ J/mol.}$
- What' more:
 - $\Box \Delta_f S^{0}(H^+, aq) = 0 J/(K mol) at every temperature. This entropy is measured on a relative scale!$
 - Absolute entropy (third law of thermodynamics) $\Delta_r S^{\theta}(H^+, aq) = -21 J/(K mol).$

B. Thermodynamic							
5							
formation functions of ions							
<u>Example</u> : Born–Haber cycle for ion formation:							
$^{1}_{2}H_{2}(g) + ^{1}_{2}Cl_{2}(g) \rightarrow H^{+}(g)$	(aq) + Cl⁻(aq)	ΔG^{θ} (kJ/mol)					
dissociation of H ₂ :	$\frac{1}{2}$ H ₂ (g) \rightarrow H(g)	+203					
ionization of H:	$H(g) \rightarrow H^{+}(g) + e^{-}$	+1318					
hydration of H*:	$H^{+}(g) \rightarrow H^{+}(aq)$	x = 0					
dissociation of Cl ₂ :	$\frac{1}{2} \operatorname{Cl}_2(g) \to \operatorname{Cl}(g)$	+106					
electron affinity of CI:	$CI(g) + e^- \rightarrow CI^-(g)$	-355					
hydration of CI- :	$CI^{-}(g) \rightarrow CI^{-}(aq)$	У					
$\Box \Delta_f G^{\theta}(Cl^-,aq) = \mathbf{x} + \mathbf{y} + 1272 \text{ kJ/mol.}$							
This is an indirect method for determining the							
directly not measurable Gibbs free energy of							
hydration (or solvation).							








C. Activities of ions in solution

- □ Free energy in an ideal <u>1:1 electrolyte</u>: □ $G_m^0 = \mu_+^0 + \mu_-^0$, and □ $G_m = \mu_+ + \mu_- = \mu_+^0 + \mu_-^0 + RT \ln \gamma_+ + RT \ln \gamma_- =$ $= G_m^0 + RT \ln \gamma_+ \gamma_-$
- γ_+ and γ_- are not separable experimentally, γ_\pm mean activity coefficients are used instead: $\gamma_+ = \sqrt{\gamma_+\gamma_-}$
- Generally (in a p:q electrolyte): $\gamma_{\pm} = {}^{p+q} \sqrt{\gamma_{+}^{p} \gamma_{-}^{q}}$ ■ geometric mean = for any fight we with **PT** and
 - for any *i* ion: $\mu_i = \mu_i^0 + RT \ln \gamma_{\pm}$

