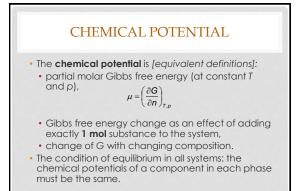
CHEMICAL POTENTIAL

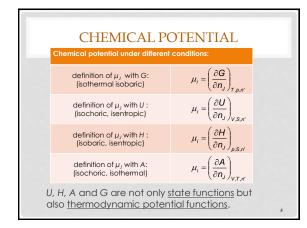

The concept of calculation of the chemical potential in one- and multi-component systems

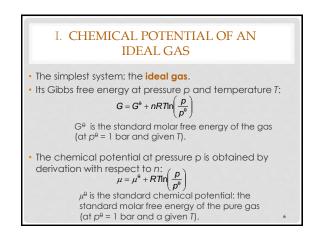
- I. Chemical potential of an ideal gas
- II. Chemical potential of real gases. Fugacity
- III. Chemical potential of liquids
- IV. Chemical potential in multicomponent systems. The Gibbs–Duhem equation
- V. Ideal mixtures. The Raoult and Henry laws
- VI. Real mixtures and solutions. Thermodynamic significance of activity. Standard state convention

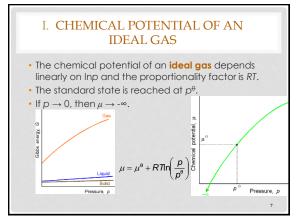
1

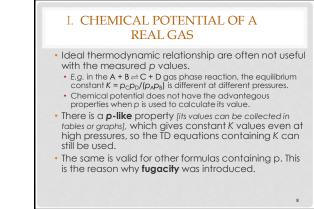
CHEMICAL POTENTIAL

- G Gibbs free energy has been introduced to characterize the equilibrium state of spontaneous processes.
- The calculations are more straightforward if the partial derivative of G with respect to the composition of the system is used: this will be called **chemical potential**.

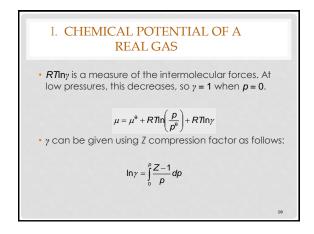

CHEMICAL POTENTIAL

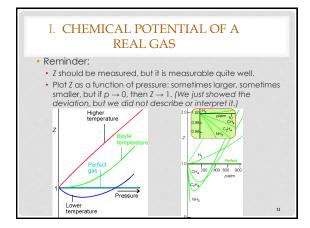

• The chemical potential of a pure substance is the same as the molar Gibbs free energy:

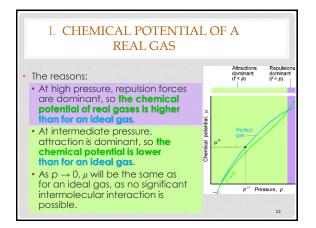

$$\mu = \left(\frac{\partial nG_{\rm m}}{\partial n}\right)_{T,n} = G_{\rm m}$$

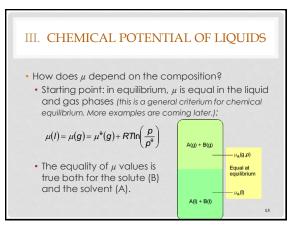

 The chemical potential µ_i of component i in a mixture is the <u>partial molar Gibbs free energy</u>:

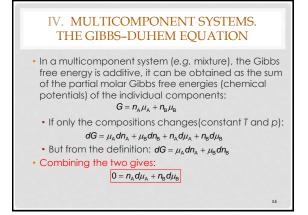
$$\mu_i = \left(\frac{\partial \mathbf{G}}{\partial n_i}\right)_{T,p,n_j}$$

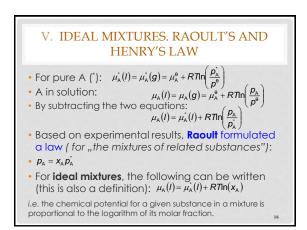



I. CHEMICAL POTENTIAL OF A REAL GAS • The definition of fugacity: for real gases, the measured


 The definition of fugacity: for real gases, the measured pressure p in the formula giving the pressure dependence of the chemical potential is replaced by effective pressure, which is called fugacity (f):


$$\mu = \mu^{\theta} + RT \ln \left(\frac{p}{p^{\theta}}\right) + RT \ln p$$


- <u>Two issues should be settled</u>.
 - the relationship between fugacity and pressure: $f = \gamma p$ where γ is the dimensionless fugacity coefficient
 - the standard state p^{0} of a real gas: a hypothetical state in which the pressure p^{θ} and it behaves like an ideal gas (no interactions).

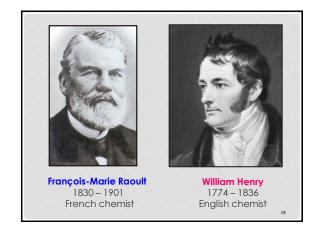


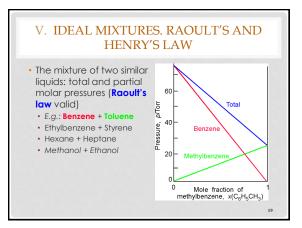
IV. MULTICOMPONENT SYSTEMS. THE GIBBS-DUHEM EQUATION

• The general form for a multicomponent system, called the **Gibbs–Duhem equation**:

 $\sum n_J d\mu_J = 0$

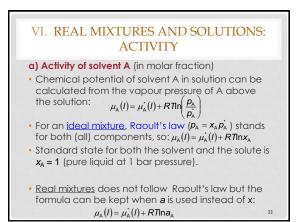
 Implication: a change in the chemical potential of one of the components is necessarily accompanied by changes in the chemical potentials of the other components as well.

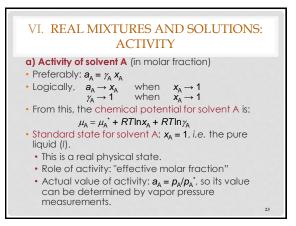

V. IDEAL MIXTURES. RAOULT'S AND HENRY'S LAW

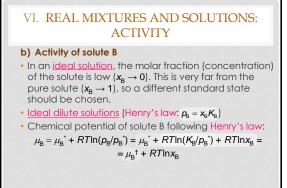

• For and ideal mixture, both components (A and B) follow Raoult's law:

 $p_{\rm A}=x_{\rm A}p_{\rm A}^{\star}$ and $p_{\rm B}=x_{\rm B}p_{\rm B}^{\star}$

- There are so-called **ideal dilute solutions** where the partial pressure of the solute is directly proportional to its molar fraction and the proportion constant instead of the pressure of the solute is another pressure-like constant ($K_{\rm B}$): $\rho_{\rm B} = x_{\rm B} K_{\rm B}$
- This is Henry's law (valid mainly for dissolved gases).
 K_B is called Henry's constant (and is different from the vapor pressure of the pure solute).


17





VI. REAL MIXTURES AND SOLUTIONS: ACTIVITY • for real gases, fugacity (effective pressure, f = yp) was used instead of pressure. • for real mixtures and solutions – in order to keep the simple formalism od thermodynamics – activity (a) and activity coefficient (y) are used instead of concentration. • We will discuss: a) the activity of solvent A (in molar fraction) and b) the activity of solvent B separately. • Inimportant question is the definition of the standard state. (For gases, it is simpler: p⁶)

24

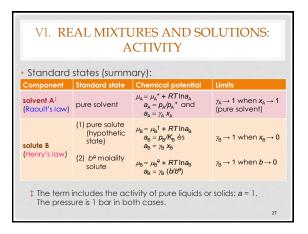
VI. REAL MIXTURES AND SOLUTIONS: ACTIVITY

b) Activity of solute B

• <u>Real mixtures</u> at higher concentrations usually do not follow Henry's law. To keep the formula for μ , activity is used instead of molar fraction:

 $\mu_{\rm B} = \mu_{\rm B}^\dagger + RT {\rm ln} a_{\rm B} = \mu_{\rm B}^\dagger + RT {\rm ln} x_{\rm B} + RT {\rm ln} \gamma_{\rm B}$

- The standard state is the same as for ideal mixtures. The difference from ideal mixtures is described by $a_{\rm B}$ and $\gamma_{\rm B}$:


$$a_{\rm B} = p_{\rm B}/K_{\rm B} = \gamma_{\rm B} x_{\rm B}$$

- When $x_{\rm B} \rightarrow 0$ (dilution), $a_{\rm B} \rightarrow x_{\rm B}$ and $\gamma_{\rm B} \rightarrow 1$.
- Real mixtures tend to be ideal when diluted.

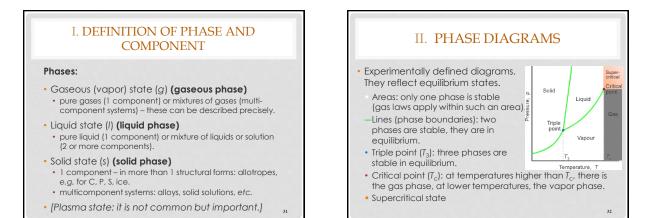
VI. REAL MIXTURES AND SOLUTIONS: ACTIVITY

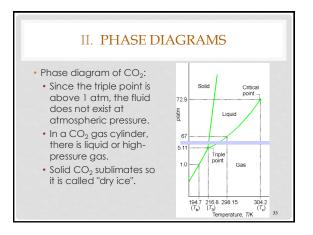
Molality-based activity:

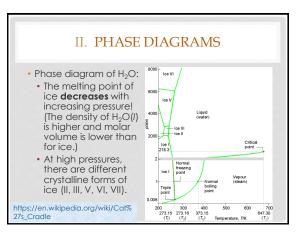
- For mixtures (solutions), molality (*m*) is often used instead of molar fraction. So, the use of molality-based activity is needed.
- In an ideal dilute solution for **solute B**, $n_{\rm B} << n_{\rm A}$, i.e. $x_{\rm B} \approx n_{\rm B}/n_{\rm A}$.
- So: $\mu_{\rm B} = \mu_{\rm B}^{\dagger} + RT \ln k + RT \ln (m_{\rm B}/m^{0}).$
- [where $x_B = k(m_B/m^2)$, k is a dimensionless constant and $m^{\rho} = 1 \mod \log^{-1}$.]
- Combining μ_B[†] and *RTInk* gives: μ_B = μ_B^Φ + *RTIn(m_B/m^Φ)*.
 [where μ_B^Φ is the standard μ of solute B when m_B = m^Φ.]
- This gives: $a_{\rm B} = \gamma_{\rm B}(m_{\rm B}/m^{\rm e})$, where $\gamma_{\rm B} \rightarrow 1$ if $m_{\rm B} \rightarrow 0$.
- in <u>real solutions</u> for **solute B**: $\mu_{\rm B} = \mu_{\rm B}^{0} + RT \ln a_{\rm B}$.

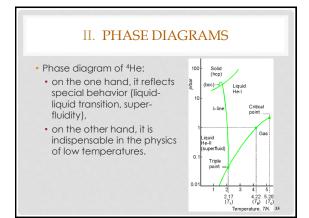
THERMODINAMICS OF ONE-COMPONENT SYSTEMS

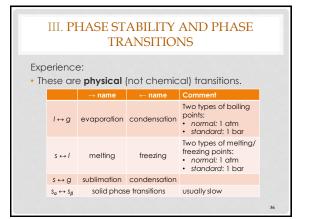
- I. Definition of phase and component
- II. Phase diagrams. Phase diagram of $\mathrm{CO}_{2^{\prime}}$ water and He.
- III. Phase stability and phase transitions
- IV. The use of chemical potential to describe the equilibria in one-component multiphase systems
- V. The effect of pressure on phase equilibria
- VI. The effect of temperature on phase equilibria. The Clapeyron equation.
- VII. Liquid-vapor systems: Clausius–Clapeyron equation. Entropy of evaporation: Trouton's rule.
- VIII.Ehrenfest classification of phase transitions

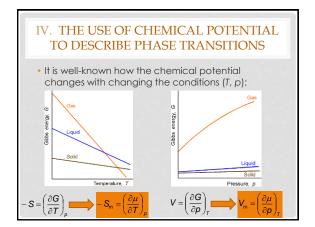

THERMODINAMICS OF ONE-COMPONENT SYSTEMS

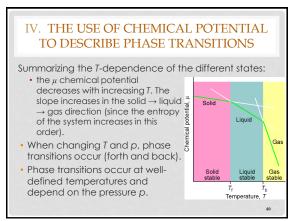

Principles of discussion:


- Equilibrium systems (states) are described and studied. (Phases are stable or phase transitions happen depending on T, p, V and x_i.)
 - In equilibrium, chemical potentials (µ) for all components in all phases are the same.
 - Equilibrium exists only in a **closed system**.
- The <u>changes</u> (phase transitions) are reversible. (Phase transitions between solid phases are often irreversible.)
 - The time needed for a phase transition is not discussed.


I. DEFINITION OF PHASE AND COMPONENT


- Definition of phase: a phase of a substance is a form of matter that is uniform throughout in chemical composition and physical state.
 - In a given phase, one or more components may be present (e.g. NH₃, air).
- Definition of component: a chemically independent constituent (e.g. element, compound, ion) of a system.
 - A given component may be present in one or more phases of a system (e.g. H₂O may be present in ice, water and water vapor if they are in equilibrium).


III. PHASE STABILITY AND PHASE TRANSITIONS


Phase transitions:

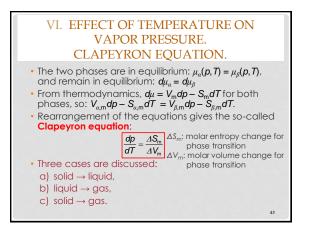
- In equilibrium, the chemical potential of a component is the same in the entire system (in all phases):
 - there is equilibrium inside a phase and
 - there is equilibrium between the phases.
- If that is not true, spontaneous processes will start in the system that will result in the equalization of chemical potentials.
- One of these processes is the phase transition (i.e. one phase transforms into another), which is a physical change.

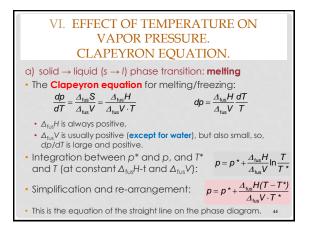
IV. THE USE OF CHEMICAL POTENTIAL TO DESCRIBE PHASE TRANSITIONS Look at a system with constant *p* and *T*, where *μ* is not the same in all phases, *i.e.* there is equilibrium in the system. If μ₁ > μ₂, than *dn* amount of substance is transferred from state 1 to state 2 (this can be either physical or chemical transformation).

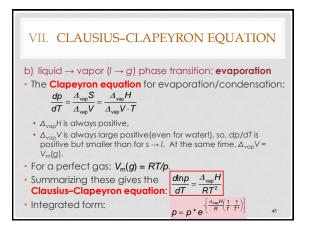
initial state	spondicous process	rindi sidic
$\mu_1 > \mu_2$	$\mu_1 \xrightarrow{dn} \mu_2$ $-\mu_1 dn + \mu_2 dn$ $dG = (\mu_2 - \mu_1) dn < 0$	$\mu_1 = \mu_2$ $dG = 0$
	$uG = (\mu_2 - \mu_1)un < 0$	38

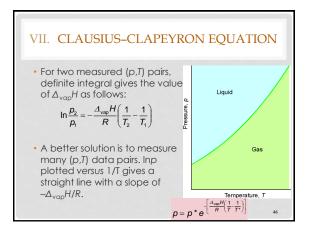
V. EFFECT OF PRESSURE ON PHASE EQUILIBRIA

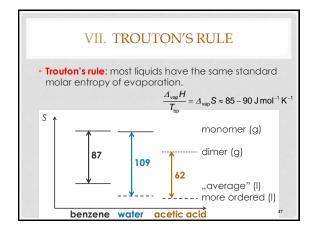
The effect of p external pressure to the T_{fus} melting point:

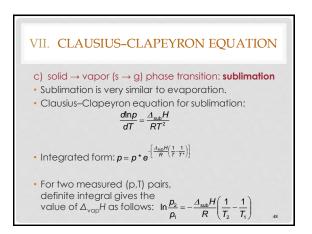

- It is known from thermodynamics that the μ
- chemical potential increases with increasing p: $(\partial \mu)$


 $= V_{\rm m}$ e.g. $d\mu = V_{\rm m} dp$

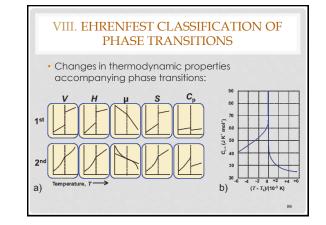

∂p

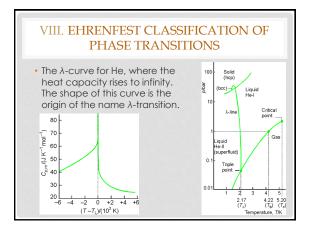

- Usually $V_m(\textbf{I}) > V_m(\textbf{s})$, thus $T_{\rm fus}$ increases with increasing p: at higher pressures, the melting point of a solid is higher.
- Water is an exception: V_m(l) > V_m(s), therefore, the T_{fus} melting point value decreases with increasing pressure. (In everyday life: glaciers, skating)


V. EFFECT OF PRESSURE ON PHASE EQUILIBRIA The effect of P external pressure to the p vapor pressure: Only the condensed (liquid) phase is affected by P. Experimental finding: ΔP external pressure increases the p vapor pressure because the molecules are "squeezed" into the vapor phase. Explanation: Initially, the chemical potential is the same in the two phases: $\mu(g)^* = \mu(I)^*$ • After ΔP change in the external pressure, the chemical potentials are still the same: $d\mu(g) = d\mu(I), d\mu(g) = V_m(g)dp$ so $d\mu(I) = V_m(I)dP$. • For a perfect gas: $V_m(g) = RT/p$ i.e. $d\mu(g) = RTdp/p$. (p* is the normal vapor pressure): $p = p^* e^{\left(\frac{V_m(t)\Delta P}{RT}\right)}$ From integration



VIII. EHRENFEST CLASSIFICATION OF PHASE TRANSITIONS


First-order phase transitions:


- the first derivative of chemical potential with respect to temperature $(d\mu/dT)$ is discontinuous
 - e.g. $g \rightarrow l, l \rightarrow s, s \rightarrow g, ...$

Second-order phase transition and $\boldsymbol{\lambda}\mbox{-transition}$:

- $\Delta H = 0, \Delta S = 0, \Delta V = 0$
- dµ/dT is continuous, but d²µ/dT² is discontinuous!
 - e.g. conducting-superconducting transition in metals, order-disorder transitions in alloys, fluid-superfluid transition

Paul Ehrenfest 1880 – 1933 Austrian and Dutch theoretical physicist 49

